
Abstract

This paper describes how we used Tcl/Tk, [incr Tcl] and BLT to
incrementally develop software for controlling a complex telecom-
munication chipset despite a tight schedule and evolving require-
ments. We describe a few interesting Tcl programming constructs
that were key to this accomplishment, and how Tk and BLT made
it possible for us to quickly deliver an impressive GUI.

1 Introduction

Our company was developing a chipset intended to complete the
central office side of multiple telephone circuits carrying digital
data integrated with traditional voice. The chipset’s data portion
would employ Asymmetric Digital Subscriber Line (ADSL) tech-
nology. Using sophisticated modulation and encoding schemes,
ADSL conveys digital data in the frequency spectrum above the
voice band. In this way, ADSL enhances traditional phone lines to
also transport digital data at rates up to approximately 9M bits/sec-
ond.

In an actual application, a microcontroller orchestrates the opera-
tion of the chipset. In previous work with voice-only chipsets, we
found it advantageous during development to replace the micro-
controller with re-configurable hardware controlled by PC-based
software. This software provides Tcl scripting support, enabling
engineers to program and control the chipset for testing purposes
without the overhead of also developing an embedded system.

We augmented our voice-only software, WinACIF [1], to support
the new integrated voice-data project. We developed new code that
would execute in the same interpreter as WinACIF to control the
Data Digital Signal Processor (DDSP). This would allow our engi-
neers to write scripts to control both the voice and data operations.

This project demanded greater flexibility and faster development
from our software design. Since the DDSP feature set, including
the control interface, could be changed by loading a different pro-
gram into its on-chip processor, our support software also had to be
re-configurable. Whereas previously our deadline corresponded
with the arrival of the first silicon versions of the designs, in this
project the designers used hardware-based emulation for their
design verification. This meant that we would have to deliver our
support tools incrementally. At any point we needed to provide
enough functionality to support the next feature the designers had
ready to test in the lab.

2 Inverting the partition

In the development of WinACIF, we coded only the GUI in Tcl/Tk.
The bulk of the program was developed as a C-coded Tcl exten-
sion. This mass of C has proven inflexible and difficult to maintain.
Given the demands of this project, it was obvious we would not
succeed if the bulk of our code was in C.

Therefore, we decided to invert the organization: nearly all of the
code would be written as object-oriented code using [incr Tcl]. C
would be used only where absolutely necessary to communicate
with the underlying hardware. We hoped that scripting would
allow faster development and facilitate end user customization of
the system. Using objects, we hoped, would help us write cleaner,
more understandable code. We were not disappointed.

3 Binding to DDSP events

One of the [incr Tcl] classes we created is a mechanism for binding
callback code to events the DDSP generates. In an actual system
application, the DDSP asserts an interrupt line to the external man-
agement controller to signal an event occurred. The controller then
responds by reading a global primary interrupt status register, and
possibly a channel-specific secondary interrupt register, to deter-
mine the nature of the event and then take the appropriate action.

Limitations of our lab hardware prevented an interrupt-driven
implementation, so instead our Ddsp object includes a polling
facility. We used the classic Tcl technique [2] of after callbacks
that re-schedule themselves. Here are the Ddsp object methods:

body Ddsp::PollStart {} {
 set _pending_poll [::after $interval \
 [code $this PollHandler]]
}

body Ddsp::PollStop {} {
 ::after cancel $_pending_poll
}

body Ddsp::PollHandler {} {
 ReadPriInt
 PollStart
}

body Ddsp::ReadPriInt {} {
 set intrList [reg_rd CIF_EXT_PRI_INT]
 foreach bitname $intrList {
 $_eventMngr trigger <$bitname>
 switch $bitname {
 “Line_0_Int” {ReadSecInt 0}
 ...

Building an ADSL Modem Evaluation and Demonstration
Platform with Tcl/Tk

Todd Copeland and David Karoly
Legerity Incorporated

{todd.copeland,david.karoly}@legerity.com

 }
 }
}

In the code above, notice that if a bit is set in the interrupt register,
the code calls the trigger method in the event manager passing it
the name of the event ($bitname). The event manager maintains an
array of lists keyed by event names. Each item in the lists is a com-
plete script. When the trigger method is called, the event manager
uses uplevel to execute the scripts associated with the event.

Our event manager has a bind method modeled after Tk’s bind.
The following binds a script to the DDSP’s counter update event.

ddsp bind <Counter_Update> {
 +puts "Got a counter update!"
}

We use this bind facility within our application to manage event
callbacks that update the GUI. We also make the bind facility
available to our users so that they can easily extend the application
without modifying the core code. This, however, presents the dan-
ger that users might remove a critical binding and corrupt the
application. By implementing the binding facility as an [incr Tcl]
class it is easy to compose two object instances within the Ddsp
object. So that user scripts may use bind, we provide a bind
method in the Ddsp object which acts as a thin wrapper around one
of the event managers. The event manager used by the application
remains safely hidden inside the Ddsp object. We gave the applica-
tion binding priority by triggering the application bindings first.

4 A pliable interface

As mentioned earlier, the meaning and addresses of the registers
comprising the control interface of the DDSP are changeable via
the program loaded into the DDSP. Therefore, we defined the con-
trol interface in a file external to our program. This de-coupled our
core code from changes in the register definitions and allowed the
DDSP developers to make many changes themselves. The file also
defines the mapping of parameter names and types to the physical
addresses of the registers. This abstraction guarantees that changes
to the physical addresses do not affect our application or user
scripts.

We organized the file as set commands. The Ddsp constructor
simply sources the file, thereby initializing private arrays in the
object. There was no need to write code to read and parse the file.

 Here is a sample of what’s in that file:

set _regInfo(CIF_EXT_PRI_INT) {
 1 05 R {M8 {Self_Test 7 ... Line_0_Int 0}
 {} {} {} {}}
}

set _regInfo(Requested_Line_State) {
 1 {0018 0090 0108 0180} R/W {E8 {idle 01
 activating 02 showtime 03} {} {} {}}
}

set _regInfo(C_Max_Attainable_Rate) {
 2 {0042 00BA 0132 01AA} R {U16.0 {}
 1.0 0 65535 Kb/s}
}

The array keys correspond to the names of registers, and the values
are lists. Each list contains information that describes the register’s
attributes: its address, read or write status, data format, minimum,
maximum and units, among other things. Formats we support
include bit masks, hex, enumerations, unsigned integers, signed
integers, and fixed-point fractional.

5 Storing code as data

An interesting requirement of the DDSP interface is that the num-
ber of bytes read by some commands is not known until the result
is returned. The result of such a command includes two fields that
indicate the range of data that follows. In our configuration file
these commands are defined like this:

set _cmdRspInfo(CMD_READ_ATUC_SNR_TABLE) {
 1 {first frmtList}
 1 {last frmtList}
 {$first $last} {SNR frmtList}
}

Our code refers to the above fields as follows:

set _cmdRspInfo(cmdname) {
 repList grpList
 ...
}

GrpList defines a parameter that consists of a single value or a vec-
tor of values as indicated by repList. By storing a little Tcl syntax
in repList, $first and $last, and relying on set and subst, our
read algorithm could be written as follows:

foreach {repList grpList} $defList {
 set start [subst [lindex $repList 0]]
 set stop [subst [lindex $repList 1]]
 if {$stop == "" } {set stop $start}
 for {set j $start} {$j <= $stop} {incr j} {
 foreach {parmName fmtList} $grpList {
 ... read each paramVal here ...
 # Set variable for use later
 set $parmName $parmVal
 }
 }
}

This has the flexibility to handle the case where the range of data is
constant as well as the case where the range of data is variable. We
set the local variable $parmName in case its value is needed to
define start or stop for a subsequent parameter.

6 Implementing a Tcl time-out

The DDSP interface enables the Central Office modem to retrieve
status information from the modem on the other side of the phone
line. This meant that we needed a way to set a reasonable time-out
period so that we wouldn’t indefinitely wait on the remote modem
to respond.

vwait gave us a mechanism to block the flow of execution and
after let us trip the vwait after a specified time-out period.

body Ddsp::cmdrsp {cmdMnem args} {
 # ... check args ...

 set _pending_timeout [::after $_timeout
 [code $this CmdRspTimeout]]

 # ... write the command ...

 vwait [scope _response_ready]
 ::after cancel $_pending_timeout

 if {$_response_ready == "TIMEOUT"} {
 # ... handle timeout case ...
 }
}

body Ddsp::CmdRspTimeout {} {
 set _response_ready "TIMEOUT"
}

Of course we needed a way to set _response_ready in the typical
case where a response arrives as expected. The following line
placed in our class constructor guarantees our vwait trips as
expected.

$_ddsp_eventMgr bind <Response_Ready> [code set
 [scope _response_ready] 1]

7 Mixing vwait with after events

Callbacks in general, and in our case after callbacks, occasion-
ally need to use the cmdrsp method described above. We soon dis-
covered that having more than one event waiting at the vwait is
problematic. We decided to remedy this by adding to our event
manager an after cmdrsp_idle method. Using this method, a user
could safely schedule a command to run when the current cmdrsp
completes.

body EventMgr::after {sequence script} {
 if {$sequence == "cmdrsp_idle"} {
 if {$_cmdrsp_idle == 1} {
 uplevel #0 $script
 return
 }
 # enqueue script to run when idle
 lappend _after_queue($sequence) $script
 }
}

We modified the cmdrsp method to signal the event manager when
a cmdrsp is in progress and when one completes.

body Ddsp::cmdrsp {cmdMnem args} {
 $_user_eventMgr cmdrsp_busy

 # ... check args, setup timeout,
 # write command, and vwait ...

 $_user_eventMgr cmdrsp_idle
}

The call to the event managers cmdrsp_idle method causes the next
pending callback to execute when control returns to the event loop.
This is accomplished with Tcl’s after idle command.

body EventMgr::cmdrsp_idle {} {

 set _cmdrsp_idle 1
 # ... Return if queue is empty ...

 # dequeue and run callback
 set script [lindex
 $_after_queue(cmdrsp_idle) 0]
 set _after_queue(cmdrsp_idle) [lreplace
 $_after_queue(cmdrsp_idle) 0 0]
 ::after idle uplevel #0 $script
}

8 Simulating the DDSP chip interface

The nature of the DDSP’s interface made testing our application
problematic: many of the actions of our application are dependent
on DDSP-generated events or data. The limited availability of the
hardware emulation platform and the complexity of using the
design simulation environment ruled out our using either to debug
our software.

To solve this problem we constructed an [incr Tcl] based model of
the DDSP Control InterFace (CIF). Methods in our Cif object
allow us to generate events and fabricate data for the purpose of
testing our software. This strategy allowed us to work indepen-
dently of the DDSP development team and deliver tested code
without disrupting their work in the lab.

The Cif object composed other objects responsible for simulating
various aspects of the DDSP interface. For instance the real CIF
would periodically generate a counter value and signal this with an
interrupt. Objects containing after based schedulers simulated
these. These objects were made configurable with [incr Tcl]’s
built-in configure method so Cif could be used in various test-
ing scenarios.

9 Delivering a compelling demo

Our bind facility combined with Tk and BLT allowed us to easily
construct displays that continually update in response to DDSP-
generated events. This GUI proved to be a useful tool during
chipset development and in demonstrations to our management
and development partners.

Our main window, seen in Figure 1, contains a grid of Tk labels
that report the type and number of various data transmission errors.
The number of occurrences of each type of error is stored directly
in the widget’s -text option instead of in dedicated variables. When
a DDSP error event occurs, code we bound to that event deter-
mines which error types occurred and increments the counts in the
corresponding widgets. It also changes the foreground color of the
updated widgets. To make the update happen, we simply set up the
bindings needed to report data defects like this:

body DdspWin::CreateBindings {} {
 for {set i 0} {$i < $_numlines} {incr i} {
 $_ddsp bind <Line_${i}_Int-Data_Defect>
 +[code $this Defect Data $i]
 }
}

 Figure 1. Main window

Conveniently, the above pattern is used in all the windows that
update based on DDSP events. Using our Ddsp object’s bind, we
are free from the details of communicating with the DDSP.

Other windows can be launched from the main menu. Each win-
dow is managed by an object instantiated by the main window
object. Figure 2 shows the Bit and Gain window. By linking
together three BLT graphs, the engineer may analyze the interrela-
tion between signal-to-noise ratio, bit allocation and attenuation
for each modem frequency bin. Figure 3 shows one of the Perfor-
mance Counter windows. We built this window with BLT’s strip-
chart widget.

Conclusions

Constructing the majority of this application with Tcl and [incr
Tcl] rather than C, enabled our success. Had we stayed on the path
using mostly C, we simply could not have finished.

Object-oriented programming with [incr Tcl] made this code
cleaner and easier to understand than our previous efforts.

Tcl’s after and vwait commands provide the necessary tools to
interface to a chipset intended to operate in an interrupt-driven
fashion. By managing application interactions behind the scenes,
binding mechanisms allowed us to structure our application in a
powerful way. A binding mechanism also gives users a means to
extend the application without modifying the core code.

Last, but certainly not least, BLT delivered the graphics capabili-
ties essential to present the complex data to our users in a familiar
way.

References
[1] T. Copeland, D. Gardner and D. Karoly. “WinACIF: A Tele-

com IC Support Tool Using Tcl/Tk”, The Sixth Annual Tcl/Tk
Conference Proceedings, Pages 23-29, San Diego, CA, Sep-
tember 1998. USENIX.

[2] M. Harrison and M. McLennan, “Effective Tcl/Tk Program-
ming: Writing Better Programs with Tcl and Tk,” Addison-
Wesley, 1997.

 Figure 2. Bit and Gain window

 Figure 3. Performance Counter window

