
Nodular, Tcl
and Software Engineering

Johann Tienhaara
MountainGrouse Software

tech@mountaingrouse.org
Abstract
Nodular is a data modelling library for Tcl. It is coded in pure
Tcl and is freely available and distributable under the BSD
license.

In a nutshell, Nodular is useful for transforming Unified
Modelling Language (UML) [6] design documents into code,
and reverse-engineering code into UML design documents. In
fact, Nodular is much more widely applicable, but the bulk of
this paper is dedicated to discussing Nodular with these aims in
mind.

At the time of writing this paper, the process of re-implementing
Nodular from the ground up (as version 1.0) has recently begun.
The previous version (version 0.8) is useful for modelling
potentially large data structures, but is fatally flawed at
translating between modelling formats. The memory
requirements for even small translation tasks are exorbitant. The
new version is much slimmer and more versatile.

This paper briefly outlines Nodular as well as my experiences in
developing it. The article is comprised of 4 sections:

1. Roundtrip Software Engineering and Tcl: Why Tcl is
the best programming language for roundtrip software
engineering tools.

2. Nodular: Why Tcl needs Nodular for roundtrip
software engineering tools.

3. Under the Hood: An overview of the structure of
Nodular.

4. Implementation Experiences: What went wrong, what
went right, what other Tcl insights came out of the
process?

1 Roundtrip Software Engineering and Tcl
1.1 Translating Data: Experiences With Tcl
Any time a programming language is called for to translate
between data formats, I recommend Tcl. This approach is the
pup of that big, brutish, nasty dog called Experience. When,
during a middleware project, I was faced with translating an
XML document (encoded in UTF-8) into an SAP IDOC
(encoded in SJIS or Big-5 or a variety of other Asian language-
friendly encodings), I searched for solutions using the
programming languages already employed: a proprietary LISP-
based language and Java. In the summer of 2001, the
proprietary LISP-based language at the core of the middleware
system did not support the Asian encodings, and support was
"planned for Q2 next year". (Ha! Sure.) Java also did not
support anything other than Unicode, UTF-8 and a handful of
other encodings (and its API for handling these encodings was
awkward at best). There were complex, expensive C++ libraries
available for the Solaris platform, but I did not have easy access
to a C++ compiler.

So I downloaded TclPro 1.4 for Solaris, wrote 5 lines of code,
and presto! SJIS and Big-5 IDOCs.

1.2 Throw Out Your JDK
(Or: Why Tcl is the Best Programming Language for
Roundtrip Software Engineering Tools. Ever.)
The ease of reading from and writing to data sources with
different encodings in Tcl already makes it an excellent starting
point for developing roundtrip software engineering tools. Add
to that the regular expression libraries, the straightforward
support for different data sources (files, sockets, databases,
XML DOM trees, and so on), cross-platform availability, and
the very fact that Tcl is an easily-extensible scripting language,
and Tcl meets most of the requirements for an environment
capable of housing flexible, extensible roundtrip software
engineering tools.

For these reasons, translating between file formats (for example,
from a Dia [4] UML diagram to [incr Tcl] [5] code and a SQL
script) and interchanging model files (for example, from a
Rational Rose model file to a Dia file to an XMI file) is much
more feasible in Tcl than in C, C++, Db / .NET, Java, Prolog,
Basic, Awk, Sed, and so on.

What, then, is missing?

2 Nodular
2.1 The Missing Link: Nodular
Nodular provides the layer that is missing in Tcl to perform
complex translations and transformations between data models.

The Nodular core provides a library for constructing graphs in
Tcl. The Nodular nodes are "functional", so each node can be
tailored to behave in a specific way to follow the rules of its
particular data model. Nodular is thus flexible enough to model
just about any kind of data, and can easily be extended or
customized by software engineers with specific requirements.

2.2 Nodules: What You Can (and Can't) Do
With Nodular
The Nodular distribution includes much more than the core of
Nodular, though. A number of "nodules" -- essentially packages
of node types, edges and graphs -- come bundled with the core.
Table 1 shows the features which are fully or partially
implemented in Nodular versions 0.8 and 1.0.

Nodule Summary Nodular v0.8 Nodular

v1.0
nodLib The “Nodular

library”:
N/A Fully

implemented.

Nodular is essentially a directed graph (or "digraph")1, with a
few distinctions that are covered in sections 3.3 (“Nodular
Graphs”) and 3.4 (“Functional Nodes”).

automatic
parser and
compiler nodes,
data type nodes,
and useful
constraints.

nodEBNF Backus-Naur
Form grammar
nodes and file
parsing.

Partially
implemented.

Fully
implemented.

nodXPath Nodes used to
parse XPath
strings for
indexing
nodXML nodes
or arbitrary
Nodular nodes.

Informally
prototyped.

Not yet
implemented.

nodUML UML data
model nodes.

Class diagrams
implemented.

Under
development.

nodDia Dia nodes, file
parsing and
Dia-to-UML
transformations.

Class diagram
transformations
implemented.

Not yet
implemented.

nodXML XML data
model nodes
and XML file
parsing.

Fully
implemented.

Not yet
implemented.

nodSQL SQL data
model nodes
and UML-to-
SQL
transformations.

Basic
CREATE
TABLE
statements
implemented.

Not yet
implemented.

nodXMLSchema XML schema
nodes.

Fully
implemented.

Not yet
implemented.

nodJava Java data model
and J2SDK,
J2EE nodes,
UML-to-Java
transformations.

Partially
implemented.

Not yet
implemented.

3.2 Graphs
The nodes in a directed graph can be used to represent complex
data structures, and the edges can be used to represent the
relationships between data structures. However, in order for the
digraph to be a useful medium for representing data models, two
elements must be added to it:

1) a label describing each node's role in a particular edge;
and

2) the ability to connect a node to itself along an edge.

For the purposes of this discussion I will refer to a directed
graph that includes these adjustments as an "augmented directed
graph" or an "augmented digraph".

For example, the structure of the XML data model might be
represented as the following augmented directed graph:

Table 1. Nodule matrix for Nodular versions 0.8 and 1.0.

3 Under the Hood Figure 2. A Nodular graph representing the XML data model.
3.1 What is Nodular?

 The core of Nodular is a library of graph routines and data
structures. The Nodular core provides procedures to create
labelled nodes (or "vertices") and connect them to each other
with doubly-labelled edges (or "arcs").

Then a particular XML document might be represented as a
number of nodes that are connected to the previous augmented
digraph by (class / instance) edges. See Figure 3 for the graph
of the following XML data:

<?xml version=1.0?>
<foo bar=”hello”>
 <foo2>
 world!
 </foo2>
</foo>
 Figure 1. Nodes and edges in Nodular. 1 For a dictionary of graph theory terminology, the following
website is a good resource:
http://www.utm.edu/departments/math/graph/g
lossary.html.
There is also an interesting exploration of graph theory in Tcl
available at:
http://mini.net/tcl/2473.

http://www.utm.edu/departments/math/graph/glossary.html
http://www.utm.edu/departments/math/graph/glossary.html
http://mini.net/tcl/2473

Figure 3. A graph of the XML data model and an XML
document.

Why would anyone want to represent nice, clean XML data with
this mess of nodes and edges?

1) An augmented directed graph can be used to model
anything;

2) an augmented digraph is easily created by a machine;
and

3) an augmented digraph is easily interpreted by a
machine.

Therefore an augmented digraph is useful in areas such as
enterprise application integration (EAI), which involves taking
data from one data source, transforming it, and storing it in
another data source. (For example, taking sales information
from a web server as an XML document, transforming it to an
SAP IDOC to begin sales processing, and then transforming it to
an SAP IDOC to begin sales order processing, and then
transforming it to a set of SQL inserts and updates to store the
transaction in a data warehouse.) Enterprise application
integration is one domain that could benefit from Tcl and
Nodular.

However, enterprise application integration is not the focus of
this paper. Software engineering is. But some of the
automatable tasks in software engineering -- such as
automatically generating skeleton or prototype code from
detailed design documents, or generating test suites from
requirements documents -- use the same principles of
transforming data that EAI uses.

3.3 Nodular Graphs
I have claimed that an augmented directed graph is an excellent
machine-understandable format for representing complex data
models. What, then, is so special about a Nodular graph?
Presumably any library of digraph nodes and edges and routines
can be easily tweaked to be useful for data modelling. There are
certainly many such libraries available with far more
comprehensive search algorithms than Nodular.

3.4 Functional Nodes

Nodular extends the basic nodes of
graph theory by making them
"functional". That is, a Nodular node
is essentially a function which either
evaluates to itself or to some other
node; and its edges are dynamically
determined by a function. The
functional nature of Nodular nodes
facilitates representing pointers,
foreign keys, inheritance
relationships, and so on.

These minor changes to an
augmented directed graph infuse
Nodular with the flexibility and
power required to model a wide
variety of data formats.

riences

ertheless, a few noteworthy insights came out of the
xercise:

1)

n invaluable addition to an extension such

2)

umber of crossed edges between shapes
in a diagram.)

e first implementation of Nodular
ersion 0.8) for two tasks:

1) into [incr Tcl]

2) iagrams (in Dia) to code
(Java and SQL in particular).

wn system model into code, progress on
e task is impossible.

4 Implementation Expe
4.1 Early Experiences
The immediate predecessor to Nodular was an XML schema-to-
Dia UML class diagram transformer [7]. Written in the fall of
2001, xsd2dia is simple, limited and ugly, because it was a quick
hack. Nev
e

Tcl has no library to support the gzip [1] format
(which is used by the Dia diagramming tool). This
would be a
as TclLib.
Automatically determining reasonable positions for
elements in a structured diagram can be achieved in
numerous ways, with varying degrees of success
depending on the particular shapes and relations being
diagrammed. A Tcl tool that supports multiple
methods of graphical placement would be valuable for
both batch processing applications (such as generating
Dia diagrams) and Tk diagramming using the canvas
widget. (Nothing as complicated as graphviz [3] is
called for here -- just some simple algorithms to
minimize the n

4.2 Nodular Version 0.8 Experiences
I have successfully used th
(v

converting complex XML schemas
code (for commercial software); and
converting small UML class d

I had hoped to progress further with the second task by
transforming several large UML models depicting a system into
code and data. But when a program running on a machine with
128 megabytes of memory requires over half a gigabyte of RAM
to transform a scaled-do
th

In retrospect, creating a separate Tcl namespace for each node,
with its own procedures and data, was not wise. Especially
when the number of nodes in the graph swells to over 10,000!

4.3 Nodular Version 1.0: the Bleeding Edge
The current version of Nodular, being developed from the
ground up, uses a similar approach to [incr Tcl] and TclDOM
[2] for naming nodes. Each Nodular node has an identifier
which is used as an index into a table where its label and
functions are stored. This approach is memory efficient (in
contrast with the unwieldy approach taken for Nodular 0.8), and
prompts the question: would a library to provide this support for
structural data in Tcl be widely useful to application developers?
For example, a "struct" namespace containing procedures which:

o maintain a counter for each type of structure being
generated;

o generate a name (comprised of the structure type and
the counter for the type -- for example, "myclass0",
"node57", "astruct999", and so on);

o store and retrieve data for each instance of a structure,
indexed by structure variable names (for example, to
facilitate retrieval of the "edges" variable of structure
instance "node73").

Nodular version 1.0 is still in the early stages of development,
but the memory footprint is infinitely smaller than its
predecessor (version 0.8). Accessing 100,000 nodes in Nodular
version 1.0 requires about 60 megabytes of RAM.

Nevertheless, Nodular is slow.

This is partly due to its very nature -- a structure so simple it can
be used as the atomic layer to build up complex structures -- but
also largely due to implementation decisions. For starters, no
caching has been implemented. This means that a complicated
getEdges function might be evaluated repeatedly during a long
operation. This inefficiency becomes apparent when, for
example, a very simple EBNF grammar takes two minutes to
parse using the Nodular EBNF parser. A complex grammar
might take hours.

Building a nodule to represent a complex data model is also a
time-consuming process. Usually there are numerous
approaches to translating a data model's structure into a Nodular
graph. Each approach has advantages and disadvantages and
must be considered carefully before and during implementation.
With experience, patterns of good nodule-building technique
and standard procedures may emerge to reduce the complexity
of designing a nodule.

The task of building the graph to represent a data model is also
very labour-intensive. This procedure begs for a simple macro-
based graphical user interface (written in Tk, of course) to
reduce the time required to build a nodular graph.

However, the process of transforming one data model into
another (once each data model has been encoded as a Nodular
graph) is easy as pie. The transformation scripts themselves can
be graph-based, so visual editing of transformation scripts is also
possible. This should render the task of tweaking the
transformation scripts fairly easy for Nodular (or even Tcl)
neophytes.

Flaws and all, Nodular gives Tcl quite a potent foundation for
roundtrip software engineering tasks. Runtime and learning-
curve efficiencies will likely be concerns for future versions of
Nodular.

For more information on the Nodular project, visit:

http://www.sourceforge.net/projects/nodular

Or contact:

Johann Tienhaara
tech@mountaingrouse.org

References
[1] Adler, Mark and Jean-loup Gailly. The gzip home page.

http://www.gzip.org/
[2] Ball, Steve, et al. Chapter 1. TclDOM.

http://tclxml.sourceforge.net/tcldom.htm
l

[3] Ellson, John, et al. Graphviz.
http://www.research.att.com/sw/tools/gra
phviz/

[4] Larsson, Alexander, et al. Dia a drawing program.
http://www.lysator.liu.se/~alla/dia/

[5] McLennan, Michael. [incr Tcl] – Object-Oriented
Programming in Tcl/Tk.
http://incrtcl.sourceforge.net/itcl/

[6] Object Management Group. UML Home Page.
http://www.uml.org/

[7] Tienhaara, Johann. Xsd2dia.
http://www.mountaingrouse.org/xsd2dia.ht
ml

http://www.gzip.org/
http://tclxml.sourceforge.net/tcldom.html
http://tclxml.sourceforge.net/tcldom.html
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.lysator.liu.se/~alla/dia/
http://incrtcl.sourceforge.net/itcl/
http://www.uml.org/
http://www.mountaingrouse.org/xsd2dia.html
http://www.mountaingrouse.org/xsd2dia.html

