
TclXML: The Next Generation

Steve Ball

Steve.Ball@zveno.com

Zveno

http://www.zveno.com

Abstract

TclXML is a family of packages that together provide com-
prehensive support for creating and processing XML docu-
ments using the Tcl scripting language. The package family is
comprised of TclXML (for SAX-style streamed parsing),
TclDOM (for in-memory tree manipulation) and TclXSLT
(for transformations).

New developments in each of the packages are discussed, as
well as new XML-based applications that make use of the
TclXML framework. The most important aspect of these de-
velopments is its impact on application development and inte-
gration.

1. Introduction

The TclXML project [1] encompasses three closely related,
but separate packages - TclXML, TclDOM [2] and TclXSLT.
Together these packages provide a comprehensive toolkit for
accessing and manipulating data in XML documents [3].
From their early development these packages have concen-
trated on the design of APIs to allow application developers to
write code that is independent of the package's implementa-
tion. TclXML and TclDOM both have a Tcl implementation,
meaning that no Tcl extensions are required to gain thier func-
tionality, albeit with slow run-time performance. Recent de-
velopment has added fast implementations to these packages.

The major addition to the TclXML project has been Tcl wrap-
pers for the Gnome libxml2 and libxslt libraries [4]. libxml2
is a C library that features XML parsing, DTD validation (a
priori and posteriori), an in-memory tree representation and
support for XPath [5]. The library's run-time performance is
very fast, with efficient memory usage. libxml2 also has
wrappers for Python, Perl, Ruby as well as other languages
and is also available as a PHP module.

libxslt is a C library for performing XSL transformations
(XSLT) [6]. Regarded as perhaps the fastest currently avail-
able XSLT processor, libxslt also features the ability to pre-
compile and cache stylesheets, as well as an interface to
XSLT's extension mechanism that allows third-party exten-
sions to be implemented in C. There are wrappers for the

libxslt library for Python, Perl and Ruby.

Since both libraries are in widespread use they are stable,
well-tested and well supported.

Tcl applications that process XML documents often need to
navigate the document tree, or otherwise identify some part of
a document to process. The W3C XPath language has been
designed for this purpose. XPath is part of the XSLT and
XML-Query languages, and DOM Level 3 [7] also has sup-
port for XPath. Addressing a document component using
XPath is quite succinct, as the following examples show:

/book
/book/chapter
//title
//section[sectioninfo]/para

Example 1. XPath Expressions

The first path selects the document element book. The sec-
ond path selects all chapter elements within a book. The
next path selects all title elements in the document. The
last path selects all para elements in a section element, as
long as that section element also contains a section-
info element.

XPath expressions can also be used to compute values. For
example,

count(value)
returns the number of value elements that are children of the
current node.

TclXML now has an XPath parser. TclDOM/tcl has partial
XPath support and TclDOM/libxml2 has full XPath support.

2. TclXML

The TclXML package provides an API for SAX-like [8]
XML document parsing. That is, it is a streamed, event-based
XML parser. It also provides implementations of a number of

http://www.zveno.com/

XML parsers. XML parser implementations have different
characteristics and trade-offs: some may concentrate on raw
performance, some may provide validation while others may
be highly flexible and configurable. For this reason, an appli-
cation may need to use different parsers during the course of
program execution. In order to support this requirement, ver-
sion 2.0 of the TclXML package has introduced a layered ar-
chitecture.

Like the SAX specification for Java and Python, the new
TclXML V2.0 package provides a generic interface to appli-

cations and a separate interface for a parser implementation.
The generic layer passes method calls and configuation op-
tions from the application to a parser implementation, and
passes data from the parser implementation to the application.
TclXML's API for applications hasn't changed very much, so
in this paper we will concentrate on the new back-end APIs.

Figure 1. TclXML Architecture

A parser implementation defines a parser class. Parser classes
are registered with the TclXML generic layer using the
TclXML_RegisterXMLParser function (at the C level)
or the ::xml::parserclass command (at the Tcl level). The
implementation passes a structure that includes pointers to
various functions, such as those to create a parser, destroy a
parser, configure a parser as well as parsing data. Whenever
the application requests that a parser be created, using the
xml::parser command, the creation method of the parser
class is invoked to create a parser instance. The generic layer
also creates a new Tcl command to control the newly created
parser instance.

Normally an application will register callback Tcl scripts with
a parser instance in order for it to receive data during the pars-
ing operation. These callbacks are registered using the parser
instance command. TclXML version 2.0 also introduces
equivalent callback registration facilities at the C API level,
allowing data to be delivered to the application without any
overhead imposed by the Tcl interpreter.

TclXML version 2.0 includes a Tcl implementation of a
parser class, as well as a wrapper for the expat library. It is
planned to include a wrapper for the libxml2 library in version
3.0 of TclXML.

3. TclDOM

The W3C Document Object Model (DOM) is a language-neu-
tral description of an API for representing an XML (or HTML

or SVG) document as a tree of objects. DOM provides a stan-
dard set of objects along with properties and methods for ma-
nipulating those objects. Evolution of the DOM standard is
described by levels; DOM Level 1 defines basic tree objects,
properties and methods for XML, DOM Level 2 adds support
for XML Namespaces, as well as other features such as
Events, and DOM Level 3 (currently in Working Draft stage)
adds support for XPath, as well as other features such as load-
ing and saving.

The TclDOM project is a Tcl language binding for the W3C
Document Object Model (DOM). It defines a Tcl API that
matches, as closely as is reasonable, the W3C DOM specifi-
cation. The project also provides a Tcl script package that im-
plements the API. As can only be expected, the script imple-
mentation is slow and memory-hungry.

Version 2.0 of TclDOM introduces a number of new features,
the most important being a new implementation - a Tcl wrap-
per for the Gnome libxml2 library. The Gnome libxml2 li-
brary is written in C and provides comprehensive set of fea-
tures for manipulating XML documents in-memory, including
SAX parsing, validation and a tree representation. The library
is fully conformant with the W3C XML Recommendation as
well as the W3C Namespaces in XML Recommendation.
libxml2 does not provide a DOM API; TclDOM makes use of
its native tree functions. A major benefit of using libxml2 is
speed; it is regarded as being one of the fastest XML proces-
sors available. To illustrate this the following table shows a
performance comparison between the Tcl and TclDOM/
libxml2 TclDOM implementations. Table 1 shows the time

taken, in microseconds, to run a simple script that creates a
number of DOM element nodes. Measurements were per-
formed on a Macintosh 800MHz G4 PowerBook, 512MB
RAM, Mac OS 10.1.5.

Although the Tcl wrapper for libxml2 is of great benefit to
Tcl applications using the DOM, the original motivation for
its development was to support handling libxml2 Document
objects in conjunction with TclXSLT (see below). Unfortu-
nately, the functionality of libxml2 does not map directly to
TclXML and TclDOM; the one library will require support
from both Tcl packages for a full implementation of the fea-
ture-set.

Elements Tcl Implementa-
tion

TclDOM/libxml2

100 1061457 48113

625 6334016 282178

2500 24883886 2680458

Table 1. TclDOM Performance Comparison

3.1 TclDOM/libxml2 Design

There were a number of goals for the design of the Tcl wrap-
per for libxml2:

1. Compatibility with TclXSLT.

2. Compatibility with the Tcl implementation of TclDOM.

3. High-performance.

The first goal has been achieved by making the TclXSLT
package use the TclDOM C API.

The second goal has been achieved by ensuring that the
TclDOM API was faithfully implemented.

The third goal is achieved in a number of ways. Firstly, where
possible internal libxml2 APIs are used to implement func-
tions rather than Tcl APIs. For example, parsing an XML doc-
ument is handled directly by libxml2. Mainly, the TclDOM/
libxml2 package uses the internal representation of Tcl ob-
jects to cache Document and Node references.

Unfortunately, it does not appear possible with Tcl to trans-
parently represent an XML document as a DOM tree. This is
because DOM trees are mutable objects, and Tcl objects have
copy-on-write seminatics. That is, the following use case can-
not be supported:

package require dom

set xmldoc {<MyDoc>
<Value>FooBar</Value>
</MyDoc>}

set docElement [dom::document cget $xmldoc \
-documentElement]

dom::document createElement $docElement Value

puts $xmldoc

Example 2. Transparent Access to XML Documents

As with other Tcl extensions that must handle mutable ob-
jects, the solution is to use object references, or "tokens".
TclDOM/libxml2 registers new Tcl object types that corre-
spond to libxml2 xmlDocPtr and xmlNodePtr types. Tcl ob-
jects of these types store a reference to the libxml2 object in
their internal representation. These objects also have a string
representation allocated - the "token". The token string is
stored in a Tcl hash table. Tcl object internal representations
are easily lost, so in these situations the token is looked up in
the hash table and the internal representation restored.

The TclDOM/libxml2 package maintains two global hash ta-
bles for all DOM documents. One of the hash tables is in-
dexed by the document's token and the other by the Document
object's memory address. Each document also maintains two
Tcl hash tables; one for tree nodes and the other for event
nodes.

libxml2 Documents and tree nodes are mapped to a single Tcl
object. The _private field of the Document or Node structure
is used to point back to the corresponding Tcl object. In order
for the system to be as efficient as possible, the mapping of
Document and Node objects to Tcl objects is performed
lazily, that is only when required. Initial testing and usage of
this scheme appears to indicate that it works well, but there
are some issues with it. When a document is destroyed all of
the node references in Tcl object internal representations be-
come invalid. If these Tcl objects are subsequently used they
will result in program failure due to dangling C pointers,
whereas they should result in a catchable Tcl error. To resolve
this problem, when a document is to be destroyed the package
first iterates through all of the references stored in the docu-
ment's node and event hash tables, performs a look up of the
corresponding Tcl object and resets its internal representation.
The (as yet unresolved) problem is that there may be more
than one Tcl object with a pointer to the node.

Figure 2. TclDOM Architecture

There is no limit on the size of a DOM tree, both in terms of
data and nodes. This is unlike other tree structures often mod-
elled in Tcl applications, such as the Tk widget hierarchy.
While it is unlikely that a Tk GUI would have over a million
widgets, it is entirely possible for a DOM tree to have that
many or more nodes. For example, this (relatively small) pa-
per has over six hundred element and text nodes, whereas a
Tk GUI with over six hundred widgets would be considered
to be a moderately complex application. For this reason it is
very important to minimise the memory overhead of DOM
nodes. TclDOM/libxml2 adds a hash table entry for each node
that is wrapped. In addition, the hash table may become very
large, slowing hash entry lookups. For this reason the design
of the TclDOM API has avoided defining node commands,
since having many node commands defined may slow down
lookup of unrelated Tcl commands. However, creating node
commands in a separate Tcl namespace may make this design
choice feasible. This approach may be explored in TclDOM
version 3.0.

3.2 XPath

Another major improvement in TclDOM is support for XPath
expressions. Applications using TclDOM commonly need to
navigate the DOM tree, or to select nodes in the tree for pro-
cessing. This can be quite tedious when using only standard
DOM methods and attributes. XPath is a language for ad-
dressing parts of an XML document. It is extremely conve-
nient to use for the purpose of document navigation and node
selection. TclDOM provides a facility for selecting new DOM
nodes given a context and an XPath expression, which can be
either an absolute or relative location path. XPath support is
present in both the Tcl and libxml2 implementations, but is
incomplete in the former.

set doc [dom::parse $xml]
foreach node \

[dom::selectNode $doc /records/customer] {
set nameNode [lindex \

[dom::node selectNode $node name] \
0]

set name [dom::node stringValue $nameNode]
set db [DB_Create -customer $name]

}

Example 3. Using XPath

The return value of the selectNode method is a static list
of node tokens. When the selectNode method is used with
the dom::DOMImplementation command, the root node of
the document is the initial context for the location path. This
is useful when the location path is an absolute path. When the
method is used with the dom::node command the given node
is the initial context for the location path. This is useful when
the location path is a relative path, but absolute paths will also
be resolved correctly.

4. TclXSLT

Another package available from the Gnome libxml project is
the libxslt XSLT processor library. libxslt is a fast XSLT en-
gine written in C, fully conformant to the W3C XSLT version
1.0 specification. The libxslt code uses libxml2 to store and
manipulate XML documents in memory, as DOM trees.
libxslt has been written as a library, and is easily embeddable
in an application.

TclXSLT, a newcomer to the TclXML family, is a wrapper
for the Gnome libxslt library. Unlike the TclXML and

TclDOM packages, TclXSLT provides only this single XSLT
processor implementation and has no provision for a layered
architecture to allow alternate implementations. It provides an
interface to compile XSL stylesheets and then transform XML
documents using those stylesheets. The source XML docu-
ment and stylesheet document must be supplied to TclXSLT
as TclDOM/libxml2 Document objects, thus TclXSLT is de-
pendent upon TclDOM in the same way that libxslt is depen-
dent upon libxml2.

4.1 Transforming XML Documents

The major purpose of the TclXSLT package is to make use of
the libxslt library to transform XML documents with an XSL
stylesheet. To do this, an XSL stylesheet must first be com-
piled using the ::xslt::compile Tcl command. This command
requires a TclDOM/libxml2 Document object as its argument
(since XSL stylesheets are, in fact, XML documents). Inter-
nally, the compile command copies the Document object and
then invokes the libxslt stylesheet compiler upon the copied
Document. Copying the document is necessary because libxslt
makes use of the _private member of the xmlDoc and xmlN-
ode structures.

set styledoc [dom::libxml2::parse $styleXML]
set stylesheet [xslt::compile $styledoc]

Example 4. Compiling An XSL Stylesheet

The return result of the xslt::compile command is a token for
the compiled stylesheet. A side effect of the command is to
create a new Tcl command, called the stylesheet command,
with the same name as the returned token. This new command
may be used to access and manipulate the compiled
stylesheet. The stylesheet command accepts the transform,
cget and configure methods.

transform is the most important method of the stylesheet
command. This method transforms the TclDOM/libxml2
Document object supplied as an argument and returns the re-
sult document as a new TclDOM/libxml2 document. The re-
sult document may be used via the TclDOM/libxml2 package,
just like any other DOM tree created by the package. For ex-
ample, the result document may become the source document
of another transformation, or may even be compiled and used
as a stylesheet. Thus TclXSLT allows efficient pipelining of
XSL transformations and caching of compiled stylesheets, as
well as caching of source and result documents.

set sourcedoc [dom::libxml2::parse $sourceXML]
set styledoc [dom::libxml2::parse $styleXML]
set stylesheet [xslt::compile $styledoc]
set resultdoc [$stylesheet transform \

$sourcedoc]
set resultXML [dom::libxml2::serialize \

$resultdoc]

Example 5. Performing A Transformation

4.2 XSLT Extensions

The XSLT standard provides a means for XSLT processor
implementations to extend the number of functions and ele-
ments available for use by the XSL stylesheet. Extension
functions and elements allow the XSLT processor implemen-
tation to provide features not present in the XSLT specifica-
tion. XML Namespaces are used to identify which functions
and elements belong to an extension. The libxslt library pro-
vides an API for defining extensions, and includes an imple-
mentation of the EXSLT extension set.

<xsl:stylesheet version='1.0'
xmlns:xsl=

'http://www.w3.org/1999/XSL/Transform'
xmlns:ext='http://exslt.org/common'
extension-element-prefixes='ext'>

<xsl:template match='Example'>
<ext:document href='example.xml'>

This is an extension.
</ext:document>

</xsl:template>

</xsl:stylesheet>

Example 6. An XSLT Extension

TclXSLT features a binding to the libxslt extension mecha-
nism that allows extensions to be implemented as Tcl scripts.
The extension mechanism provided by TclXSLT associates
the XML Namespace used by the extension to a Tcl names-
pace that implements the extension. The ::xslt::extension
command is used to manage these associations.

xslt:extension add \
http://www.zveno.com/resources ::resources

Example 7. The xslt::extension Command

The add method of the ::xslt::extension command creates an
association between an XML Namespace and a Tcl names-
pace. There are also methods to remove and list these asso-
ciations.

The TclXSLT package's extension mechanism registers all
Tcl procedures in the given Tcl namespace as either XSLT
extension functions or XSLT extension elements. If the proce-
dure accepts a variable number of arguments, then it is regis-
tered as an extension function. Otherwise it is registered as an
extension element. TclXSLT uses Tcl introspection (ie, the
info args command) to determine what formal parameters a
procedure accepts. Thus it is not possible to directly register

Tcl built-in commands. Registration occurs when an XSLT
stylesheet is initialised using the ::xslt::compile command.

namespace eval ::resources {
proc exists {resource args} {

return [info exists $resource]
}

}

Example 8. Registering An Extension Function

The example above would cause the exists extension function
to be registered in the http://www.zveno.com/resources exten-
sion namespace.

<xsl:stylesheet version='1.0'
xmlns:xsl=

'http://www.w3.org/1999/XSL/Transform'
xmlns:resource='http://www.zveno.com/resources'
extension-element-prefixes='resource'>

<xsl:template match='Foo'>
<xsl:value-of

select=
'resource:exists("/home/steve/doc")'/>

</xsl:template>

</xsl:template>

Example 9. Using an Extension

The stylesheet in the example above declares the extension
using the extension-element-prefixes attribute. Now the XML
namespace http://www.zveno.com/resources is associated
with the Tcl namespace ::resources and the procedure
::resources::exists is registered as an extension function. The
current implementation of TclXSLT, version 2.2, converts the
arguments to an extension functions to a string value, appends
these values to the procedure name and then evaluates the re-
sulting command line, as shown in the following example.

::resources::exists /home/steve/doc

Example 10. Evaluated Command

The return value of the procedure is returned as an XPath
string object. If the procedure results in an error, then an error
object is returned.

The current implementation os TclXSLT does not support ex-
tension elements. Future implementations of TclXSLT will
preserve the data type of arguments. Extension elements will
be supported by passing a single argument to the Tcl proce-
dure which will be the DOM node of the extension element.
The data type of the return value will also be preserved, with
DOM nodes being passed as node objects and lists of DOM
nodes passed as a nodeset.

5. Implications

Whereas Tcl is a very-high-level, general-purpose scripting
language, XSLT is a very-high-level, special-purpose trans-
formation language. XSLT has been deliberately designed to
not be suitable for handling all types of programming tasks.
However, in an environment where data is increasingly made
available as, or within, XML documents and where the inputs
to other processes use XML it becomes very attractive to use
XSLT in place of a scripting language. The fact that XSLT is
a W3C standard, and supported by major software vendors on
all major computing platforms, reinforces the choice of XSLT
as the language for implementation of business, application
and presentation logic.

So there is a desire to use XSLT as much as possible to imple-
ment an application. A major limitation to realising this engi-
neering solution is that XSLT has few facilities for interfacing
with the "real world". The solution to this problem is to define
XSLT extensions that provide the "glue" to the external envi-
ronment. TclXSLT's extension mechanism provides an ideal
way to overcome this problem, since Tcl has excellent inter-
faces to the various resources of a system and implementing
XSLT extensions is much easier than using C.

Another impediment to making use of XSLT is that the stan-
dard does not specify the environment in which transforma-
tions take place (nor should it). That is, an application needs a
framework to run the XSLT processor: marshalling the source
documents, supplying the parameters and disposing of the re-
sult document. TclXSLT also provides a solution, because an
XSLT processor can be embedded in a Tcl application: a GUI
tool, such as xmltool, or a Web server, such as tclhttpd or
mod_dtcl.

It is interesting to note how TclXSLT makes XSLT an em-
beddable library for XML processing for the Tcl language.
TclXSLT allows Tcl to invoke an XSL stylesheet, as well as
allowing the XSL stylesheet to call back into the application's
Tcl code. This is completely analagous to the way in which
Tcl is an embeddable library for C. Previously, one might
have considered software engineering based on scripting lan-
guages to be two-tiered, with application logic implemented
using the scripting language (Tcl, Python, Perl) and low-level
components implemented using the system language (C, C++,
Java). Now, software engineering using TclXSLT is three-
tiered, with application logic implemented as an XSL
stylesheet, lower-level components (accessible as XSLT ex-
tensions) implemented using the scripting language and fi-
nally lowest-level components implemented using the system
language. Note that other scripting languages also have wrap-
pers for libxslt (or other XSLT processors), so this phe-
nomenon is by no means peculiar to Tcl.

Figure 3. Two Tiered Application

Figure 4. Three Tiered Application

6. Applications

Now that a high-performance, efficient framework is avail-
able for processing XML documents a number of applications
are being developed to leverage the TclXML family of pack-
ages. These applications include a document authoring tool
and entry-level content management systems. xmltool is a
simple GUI application that drives XML parsers, XSL trans-
formers and comparators. Simple CMS is a more sophisti-
cated Web-based application that also drives parsing and
transformation processes, but as part of a workflow. waX Me
Lyrical (waX) is an information authoring tool that uses XML
as its underlying save format and employs a DOM tree for
editing.

6.1 waX

The primary design goal of the waX Me Lyrical application
(waX) is to enable a document author to create and maintain
information, independent of the eventual use of that applica-
tion - whether it be for print publishing, Web publishing or
other purposes. To achieve this goal waX uses XML as the
document medium. A specific non-goal is for waX to be an
XML editor. Initially, waX is primarily aimed at supporting

authoring of DocBook documents.

Under-the-hood, waX is, in fact, a DOM-based editor. DOM
Events are used to synchronise the various GUI components.

Figure 5. waX

6.2 xmltool

xmltool (fancier, more marketable name pending) is a very
simple tool for performing XML processing tasks upon XML
documents. These tasks include checking well-formedness,
checking validity, transforming documents and comparing
documents.

Figure 6. xmltool

6.3 Simple CMS

The Simple Content Management System (SCMS) takes xml-
tool to the next level by adding processing workflows. Work-
flows are specified using the XML Pipeline Definition Lan-
guage, a W3C Note. The implementation of SCMS is mostly
achieved using XSLT. Currently, SCMS uses xmltool as the
host application interface but other interfaces are planned, in

particular a Web server application.

The XML Pipeline Definition Language [9] is an XML
schema for specifying how resources are processed. The rules
defining the processing workflow are contained in a "pipeline
document". Software that interprets a pipeline document is
known as a "pipeline controller". At the heart of SCMS is a
pipeline controller.

For example, this paper, written in DocBook, must be trans-
formed into an XSL Formatting Objects (XSL-FO) document
and then the XSL-FO document is rendered to PDF. A
pipeline document that implements this workflow is as fol-
lows:

<pipeline
xmlns='http://www.w3.org/2002/02/xml-pipeline'>

<processdef name='transform.p'
definition='org.xmlpipeline.xslt'/>

<processdef name='format.p'
definition='org.apache.xml.fop'/>

<process type='format.p'>
<input name='document' label='paper.fo'/>
<output name='result' label='paper.pdf'/>

</process>

<process type='transform.p'>
<input name='document' label='paper.xml'/>
<input name='stylesheet'

label='xsl/fo/docbook.xsl'/>
<output name='result' label='paper.fo'/>

</process>
</pipeline>

Example 11. A Pipeline Document

It is tempting to think of XML Pipeline as "Make on XML
Steroids". The pipeline controller is expected to check
whether the target resource exists and if it does whether it is
out-of-date with respect to its dependencies. Only if the target
does not exist or is out-of-date does the stipulated process
need to be performed.

It is not possible to implement a pipeline controller using
XSLT version 1.0 alone. In particular, XSLT has no way of
testing the existence of a resource and certainly no means by
which to find the last modification date of a resource. SCMS
solves this problem by providing a set of XSLT extensions,
implemented as Tcl procedures, via TclXSLT. The goal of the
SCMS project is to find the minimum set of extensions that
allow the implementation of a pipeline controller.

7. Conclusion

The TclXML family of packages now has three members:
TclXML (for parsing), TclDOM (for tree manipulation) and
TclXSLT (for transformations). TclDOM and TclXSLT pro-
vide Tcl wrappers for the Gnome libxml2 and libxslt libraries
respectively. The Gnome libraries give a significant perfor-
mance boost to applications using TclDOM, as well as pro-

viding a range of functionality.

Future work on these packages will see TclXML/
TclDOM/TclXSLT version 3.0 all providing libxml2/libxslt
wrappers. TclXML v3.0 will provide access to libxml2's SAX
interface. All of the packages will better support preserving
Tcl and XPath data types. The aim is to provide high-
performance, and eventually for Tcl to host all aspects of
XML processing and to be able to interpose on all operations,
including parsing and resolving external entities.

Both the TclDOM and TclXSLT packages value-add to the
wrapped Gnome libraries. TclDOM/libxml2 implements the
same API as its Tcl implementation, including the DOM
Level 2 Event model. TclXSLT incorporates a binding to the
libxslt extension mechanism, allowing XSLT extension ele-
ments and functions to be implemented as Tcl scripts.

XSLT is a special-purpose, high-level language for handling
XML documents. TclXSLT allows XSLT to be used for engi-
neering sophisticated applications, with Tcl providing compo-
nents and an interface to external resources and legacy appli-
cations and data. This represents a radical departure from the
traditional use of Tcl as a high-level control language.

8. References

[1] TclXML Project. Steve Ball, et al.
http://tclxml.sourceforge.net/

[2] XML Support For Tcl. Steve Ball. Proceedings of the
6th Tcl/Tk Conference. September 1998, San Diego
CA USA.

[3] eXtensible Markup Language, Second Edition. Tim
Bray (Ed). W3C Recommendation
[http://www.w3.org/TR/] October 2000.

[4] libxml2, libxslt libraries. Daniel Veillard, et al.
http://xmlsoft.org/

[5] XML Path Language (XPath). James Clark, et al.
W3C Recommendation [http://www.w3.org/TR/]
November 1999.

[6] XSL Transformations (XSLT). James Clark. W3C Rec-
ommendation [http://www.w3.org/TR/] November
1999.

[7] Document Object Model (DOM). Philippe Le Hegaret,
Lauren Wood, Arnaud Le Hors, et al. W3C Recom-
mendation [http://www.w3.org/TR/] November 2000.

[8] Simple API for XML (SAX). David Megginson, XML-
DEV mailing list. http://www.megginson.com/.

[9] XML Pipeline Definition Language. Norm Walsh, Eve
Maler. W3C Note [http://www.w3.org/TR/] February
2002.

http://tclxml.sourceforge.net/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://xmlsoft.org/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.megginson.com/
http://www.w3.org/TR/
http://www.w3.org/TR/

