
The NAP (N-Dimensional Array Processor) Extension to Tcl

Harvey Davies
CSIRO Atmospheric Research

Private Bag Number 1, Aspendale
Victoria 3195, Australia

harvey.davies@csiro.au

ABSTRACT
NAP is a loadable extension of Tcl that provides a con-
venient, powerful and efficient facility for processing data
in the form of n-dimensional arrays. Special facilities are
provided for data based on n-dimensional grids, where the
dimensions correspond to continuous spatial coordinates.
There are interfaces to the HDF and netCDF file formats
commonly used for such data, especially in Earth sciences
such as Oceanography and Meteorology.

1. INTRODUCTION
After developing a query language FAN [1] for array-oriented
files, the author became convinced that a proper scripting
language was needed for the flexible mathematical process-
ing of large volumes of array-oriented data such as the re-
sults of atmospheric modeling typified by those of Hunt and
Davies[8].

The author then became involved in the development of the
CAPS [17][16] software for processing satellite data. This
software is based on Tcl/Tk and consists of two new exten-
sions written in C, CAPS and NAP. CAPS is based on NAP
but NAP can be used independently of CAPS and has been
released as free software from the sourceForge facility. (See
[3].)

NAP provides the essence of array-processing languages such
as APL, J [9], IDL [14], DPML [5] and Matlab [15]. NAP
has a number of innovative features including support for
grid-oriented data based on continuous spatial coordinates.

NAP provides these facilities with a distinct Tcl flavor. NAP
sets standard Tcl variables to the (string value of) identi-
fying handles of the internal structures used to store the
arrays. Each such structure has a Tcl command associated
with it. This command is used to modify the structure and
obtain information from it.

Careful coding of NAP has achieved speeds close to those of

pure C code, despite the need to test for missing values of all
operands. Efficient use of memory is achieved by providing
a range of data-types and automatically deleting data which
is no longer needed.

2. TYPOGRAPHIC CONVENTIONS
The examples in this paper have input command lines be-
ginning with the standard Tcl prompt ‘%’. Some output has
been edited to reduce its width to that available.

Syntax is specified using the following conventions:
Anything enclosed in brackets (‘[’ and ‘]’) is optional.
Alternatives are separated by a vertical bar (‘|’).

3. FEATURES OF NAP
NAP data are stored in C structures called n-dimensional
array objects or NAOs. These include information such
as data-type, OOC-name (identifying handle generated by
NAP), label, unit of measure, reference count, missing-value
(value indicating null data), rank (number of dimensions),
dimension sizes, dimension names and pointers to coordinate-
variable NAOs associated with each dimension. There are
eleven data-types, six for integers, two for floating-point, one
for characters, one pointer type (allowing arrays of arrays)
and a ragged type providing a form of compression.

A coordinate-variable is a vector defining the relationship
between subscript values and distances along an underlying
continuous physical dimension. For example a geographic
matrix might have two coordinate variables defining the lat-
itude of each row and the longitude of each column.

The main NAP command nap evaluates an expression based
on C conventions (like the Tcl expr command). Parsing is
done using the GNU bison implementation of yacc[10].

NAP arithmetic has the following significant features.

Operand shapes are compatible provided the trailing dimen-
sions match. (E.g. one can add a 3-element vector to a 4×3
matrix.) Operands with inappropriate data types are auto-
matically converted to the most space-efficient types possi-
ble without danger of data loss. (E.g. attempting to add a
32-integer to a 32-float would result in both being converted
to 64-bit floats.)

Infinity arithmetic [2] (using ∞ and NaN) is supported and
is based on the IEEE standard 754 for binary floating-point

arithmetic described by Goldberg[6]. If an operand’s value
is NaN or matches its missing-value then the result is set to
the missing-value.

Each NAO can be accessed via its own Tcl command called
an object-oriented command or OOC. The first argument of
an OOC specifies a method. If there are no arguments (de-
fault method) then data are displayed. There are methods
to

• display data and other information from the NAO

• write data to files and BLT vectors

• modify data and other properties

It is seldom necessary to explicitly specify OOC-names. Within
expressions, they can be replaced by variable names. OOCs
can be executed using the ‘$’ and ‘[]’ of Tcl syntax.

Unlike expr, nap has an assignment operator (’=’). This sets
a Tcl variable to an OOC-name, increments the reference
count and puts a trace on this variable to decrement the
count if this variable is deleted or changed and then delete
the NAO if the count drops to zero. Reference counting
is also automatic for the various kinds of pointer from one
NAO to another. However it is occasionally necessary to
explicitly adjust reference counts for other types of reference
such as those from Tk widgets.

NAP includes interfaces to the HDF[12] and netCDF[18] file
formats. Both input and output are supported.

There is a new photo image format for NAP data. This can
be used to display data as images and write it to image files
with standard formats (e.g. GIF, JPEG).

The user can define functions using code written in Tcl, C
or Fortran.

4. COMPARISON WITH ALTERNATIVES
Standard Tcl has an array facility based on associative ar-
rays. This is not a data parallel facility and it is therefore
necessary to process each element individually by looping.
This is tedious to code and far too slow for serious mathe-
matical processing of arrays containing millions of elements.

Three extensions provide array processing facilities which
partially overcome these problems. The following sections
compare these with standard Tcl and NAP. This comparison
is based on the following very simple standard problem:

1. Assign to x a vector containing 2, 2.5 and 5.

2. Assign to y the vector containing the squares of these.

3. Display y.

4.1 Standard Tcl Array Facility
This standard problem can be done as follows:

% set x(0) 2

2

% set x(1) 2.5

2.5

% set x(2) 5

5

% set n [array size x]

3

% for {set i 0} {$i < $n} {incr i} {

set y($i) [expr "$x($i) * $x($i)"]

}

% for {set i 0} {$i < $n} {incr i} {

puts "$y($i)"

}

4

6.25

25

One can handle multiple dimensions by using (text) indices
consisting of subscripts separated by commas, as in

% set matrix(2,3) 2.5

4.2 BLT vector Command
Howlett[7] describes the BLT vector facility which oper-
ates on internal structures containing 1-dimensional 64-bit
floating-point values. The following example shows how this
facility can be used to solve the above standard problem:

% vector create x 3; # create 3-element vector x

::3

% x set {2 2.5 5};# store these values in it

% x dup y;# create new vector y as copy of x

% y expr "x * x";# multiply x by x & store in y

% set y(:);# display y

4.0 6.25 25.0

4.3 tk3D tensor package ‘tns’
McKay[11] describes tns which was developed by General
Motors. It provides arrays (tensors) of six data types and
any rank. The standard problem could be done as follows:

% tensor x -initial {2 2.5 5};# create x

% tensor y -size {3};# create 3-element y

% y = tensor x;# copy x to y

% y *= tensor x;# multiply y by x

% y;# display y

4.0 6.25 25.0

4.4 ‘TiM’ image/matrix processing extension
Thiébaut[4] describes TiM which was developed at the Ob-
servatoire de Lyon in France. This has five data types. All
data are treated as matrices, so a scalar is represented by a
1×1 matrix and a vector by a 1×n (or n×1) matrix. The
astronomical FITS file format is supported. Our standard
problem could be done as follows:

% @set x {[2.0,2,5,5.0]}

% @set y "$x^2"

% @print $y

4.0 6.25 25.0

Note that the @set command sets a Tcl variable to an array
handle in a similar fashion to NAP.

4.5 NAP
% nap "x = {2 2.5 5}"

::NAP::13-13

% nap "y = x * x"

::NAP::14-14

% $y

4 6.25 25

The first command assigns to x a vector containing the three
elements 2, 2.5 and 5. The second command assigns to y a
vector containing the three elements which are the squares of
the corresponding elements of x. The command ‘$y’ returns
the value of y.

5. SAMPLE SESSION
The following sample session continues the above example
to illustrate further basic features of NAP.

An OOC-name has the form ::NAP::seq-slot, where

• ::NAP:: is the Tcl namespace used by NAP

• seq is the sequence number assigned in order of cre-
ation

• slot is the index of an internal table used to provide
fast access to NAOs.

Both OOC-names (::NAP::13-13 and ::NAP::14-14) have
slots equal to their sequence number, but this is not the case
in general since the slots of deleted NAOs may be reused.

An assignment (‘=’) operator has on its left a standard Tcl
variable name which is assigned the (string) value of the
OOC-name. These string values in the above example can
be displayed using the standard Tcl command set.

% set x

::NAP::13-13

% set y

::NAP::14-14

Thus the command ‘$y’ is equivalent to the command
‘::NAP::14-14’. Confirming this:

% ::NAP::14-14

4 6.25 25

If an OOC has no arguments (as above) then it returns
the value of the NAO (abbreviated if the NAO is large).
Arguments can be specified as in:

% $x all

::NAP::13-13 f64 MisVal: NaN Refs: 1 Unit: (NULL)

Dimension 0 Size: 3 Name: (NULL) CoordVar: (NULL)

Value:

2 2.5 5

This illustrates the ‘all’ method which provides a more de-
tailed description of the NAO than the default method.

The similarity between the ‘expr’ and ‘nap’ commands for
simple arithmetic is shown by:

% expr "2 * (1 - 0.25)"

1.5

% nap "2 * (1 - 0.25)"

::NAP::25-25

% ::NAP::25-25

1.5

% ::NAP::25-25

invalid command name "::NAP::25-25"

Note that the command ‘::NAP::25-25’ worked the first
time but failed when it was repeated. The NAO’s refer-
ence count was zero, as it was not referenced by anything
(e.g. a Tcl variable). So the NAO and its associated OOC
were automatically deleted after the first execution of the
OOC.

The need to type the additional command ‘::NAP::25-25’
can be obviated using the Tcl bracket (‘[]’) notation. Tcl
executes the bracketed command, substitutes its result and
then executes the generated command. So the above can be
replaced by:

% [nap "2 * (1 - 0.25)"]

1.5

The following example illustrates array indexing and the cal-
culation of an arithmetic-mean (both directly and by defin-
ing a function). The first two commands:

• define a 32-bit floating-point vector containing the five
values 56, 75, 47, 99 and 49

• assign it to the variable score

• display it

% nap "score = f32{56 75 47 99 49}"

::NAP::16-16

% $score all

::NAP::16-16 f32 MisVal: NaN Refs: 1 Unit: (NULL)

Dimension 0 Size: 5 Name: (NULL) CoordVar: (NULL)

Value:

56 75 47 99 49

The following four commands respectively illustrate:

1. indexing a vector by a scalar ‘2’ to give a scalar

2. indexing a vector by a vector ‘2 0 4’ to give a vector

3. the operator ‘..’ which defines an arithmetic progres-
sion

4. the use of such an arithmetic progression as an index

% [nap "score(2)"] all

::NAP::20-20 f32 MisVal: NaN Refs: 0 Unit: (NULL)

Value:

47

% [nap "score({2 0 4})"] all

::NAP::25-25 f32 MisVal: NaN Refs: 0 Unit: (NULL)

Dimension 0 Size: 3 Name: (NULL) CoordVar: (NULL)

Value:

47 56 49

% [nap "0 .. 3"]

0 1 2 3

% [nap "score(0 .. 3)"]

56 75 47 99

The following three commands respectively illustrate:

1. function sum, which has the functionality of ‘Σ’

2. function nels, which gives the number of elements

3. the use of these to calculate an arithmetic-mean

% [nap "sum(score)"]

326

% [nap "nels(score)"]

5

% [nap "sum(score) / nels(score)"]

65.2

The following two commands respectively illustrate:

1. the definition of a tcl procedure to calculate an
arithmetic-mean using NAP

2. the calling of this procedure as a NAP function

% proc mean x {nap "sum(x)/nels(x)"}

% [nap "mean(score)"]

65.2

Functions min and max operate in a manner similar to sum,
as shown by:

% [nap "min(score)"]

47

% [nap "max(score)"]

99

If the function reshape has two arguments then it reshapes
the first to the shape specified by the second, as in:

% [nap "reshape({1.3 9.2 -1 0}, {2 3})"]

1.3 9.2 -1.0

0.0 1.3 9.2

Here a 4-element vector is reshaped to a 2× 3 matrix. Note
the recycling after the 4 elements were exhausted.

If there is only one argument then this is reshaped to a
vector with the same number of elements. E.g.

[nap "reshape({{1 3 2}{0 -9 7}})"]

1 3 2 0 -9 7

Procedures defining NAP functions have arguments and re-
sults whose values within the procedure are OOC-names.
All the facilities of Tcl and NAP can be used. So recursion
is allowed, as shown by the following factorial example:

% proc factorial n {

if {[[nap "max(reshape(n)) > 1"]]} {

nap "n > 1 ? n * factorial(n-1) : 1"

} else {

nap "1"

}

}

% [nap "factorial {4 1 6 0}"]

24 1 720 1

Note the double brackets in the if command. The inner
brackets produce an OOC-name. The outer brackets execute
this OOC to produce the string ‘0’ or ‘1’.

6. DATA TYPES
NAP provides the following data types:

Name Description
c8 8-bit character
i8 8-bit signed integer
i16 16-bit signed integer
i32 32-bit signed integer
u8 8-bit unsigned integer
u16 16-bit unsigned integer
u32 32-bit unsigned integer
f32 32-bit floating-point
f32 64-bit floating-point
ragged rows compressed by suppressing

leading/trailing nulls
boxed slot numbers (used as pointers to NAOs)

7. NAP COMMANDS
NAP includes three ordinary Tcl commands. NAOs are
created by the commands nap, which executes a specified
expression, and nap_get, which reads several varieties of
file. The nap_info command provides information about
the NAP system.

7.1 Reading Files using ‘napget’ Command
The nap get command reads data from a file and uses this
data to create a NAO. The first argument specifies the type
of file, which can be binary, hdf or netcdf.

7.1.1 Reading Binary Data
Binary data is read using the command
nap get binary channel [datatype [shape]]
where datatype defaults to u8 and shape defaults to that of
a vector whose size matches that of the file.

The following example first writes six 32-bit floating-point
values to a file using standard Tcl commands. This data is
then read back into a NAO named ‘in’ using
‘nap get binary’:

% set file [open float.dat w]

file4

% set data {1.5 -3.0 0 2 4 5}

1.5 -3 0 2 4 5

% puts -nonewline $file [binary format f* $data]

% close $file

% set file [open float.dat]

file4

% nap "in = [nap_get binary $file f32]"

::NAP::13-13

% close $file

% $in all

::NAP::13-13 f32 MisVal: NaN Refs: 1 Unit: (NULL)

Dimension 0 Size: 6 Name: (NULL) CoordVar: (NULL)

Value:

1.5 -3 0 2 4 5

Note that no shape was specified, giving a 6-element vec-
tor. The following example reads the file again, this time
specifying a shape of {2 3}. The NAO is displayed but not
saved.

% set file [open float.dat]

file6

% [nap_get binary $file f32 "{2 3}"] all

::NAP::32-32 f32 MisVal: NaN Refs: 0 Unit: (NULL)

Dimension 0 Size: 2 Name: (NULL) CoordVar: (NULL)

Dimension 1 Size: 3 Name: (NULL) CoordVar: (NULL)

Value:

1.5 -3.0 0.0

2.0 4.0 5.0

% close $file

7.1.2 Reading netCDF and HDF Data
NetCDF and HDF files are read using the command
nap get netcdf|hdf filename name [index]
name is the name of a variable or attribute and has the form

• varname for a variable

• varname:attribute for an attribute of a variable

• :attribute for a global attribute

If index is omitted then the entire variable is read in. Oth-
erwise index selects (using cross-product indexing if multi-
dimensional) elements from the file.

7.2 Object-Oriented Commands
Object-Oriented Commands (OOCs) are used to:

• display the data in the NAO

• display other information (metadata) about the NAO
such as its data-type and dimensions

• change data and other details

• write data from the NAO to a binary, HDF or netCDF
file

• write data from the NAO to a BLT vector

The first argument specifies the method.

Method value returns data values. If there are no switches
then all values are included, as in:

% [nap "2 ** (0 .. 12)"] value

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

The default method (without switches) displays only the
first 20 lines and 6 columns. Thus if value is deleted from
this command we get:

% [nap "2 ** (0 .. 12)"]

1 2 4 8 16 32 ..

Method all returns both data values and metadata. E.g.

% [nap "2 ** (0 .. 12)"] all

::NAP::21-21 f32 MisVal: NaN Refs: 0 Unit: (NULL)

Dimension 0 Size: 13 Name: (NULL) CoordVar: (NULL)

Value:

1 2 4 8 16 32 ..

All these methods (which return data values) take the fol-
lowing switches:
-format format: C format (default: "" meaning automatic)
-columns int: max. no. columns (-1: no limit)
-lines int: max. no. lines (-1: no limit)
-list: print in tcl list form (using braces) e.g. ‘{1 9 2}’
-missing text: text printed for missing value (default: ‘ ’)
-keep: Do not delete NAO with reference count of 0

Thus the following gives one decimal place and ten columns
using the default method:

% [nap "2 ** (0 .. 12)"] -f %.1f -c 10

1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0 256.0 512.0 ..

Most NAO components have a corresponding method pro-
viding their value. The following example illustrates three
of these metadata methods; datatype, shape and missing:

% [nap "x = {{0 2.4 1}{3.6 2 -9}}"]

0.0 2.4 1.0

3.6 2.0 -9.0

% $x datatype

f64

% $x shape

2 3

% $x missing

NaN

Some of these NAO components can be modified using the
set method. The following continuation of this example
shows how changing the missing value to -9 changes the
sums of the columns:

% [nap "sum(x)"]

3.6 4.4 -8

% $x set missing -9

% $x missing

-9

% [nap "sum(x)"]

3.6 4.4 1

Note that the -9 element is no longer included in the sum.

The set method can also be used to modify data values.
The following changes the value of two elements:

% $x set value "{-1 -3}" "1,{0 2}"

% $x

0.0 2.4 1.0

-1.0 2.0 -3.0

Methods ‘write’, ‘netcdf’ and ‘hdf’ write binary data from
the NAO to a file. The following example writes this 2 × 3
matrix to file y.tmp and then reads it back (as a 6-element
vector).

% set file [open x.tmp w]

file4

% $x write $file

% close $file

% set file [open x.tmp]

file4

% [nap_get binary $file f64]

0 2.4 1 -1 2 -3

% close $file

8. NAP EXPRESSIONS

8.1 Constants
NAP provides a variety of constants. NAP is oriented to nu-
meric data but does provide string constants. The data-type
can be specified as a suffix (except for strings and hexadec-
imal constants). Numeric constants can be scalars (simple
numbers) or higher-rank arrays.

8.1.1 Integer Scalar Constants
An integer scalar constant can be specified in decimal, octal
or hexadecimal form. Octal and hexadecimal integer con-
stants begin with a zero.

The default data-type is i32 for decimal integer constants
and u32 for octal integer constants. A data-type suffix is not
allowed for hexadecimal constants because some cases would
be ambiguous. Hexadecimal constants are 32-bit unsigned
integers.

Examples of integer scalar constants are:

Constant Decimal Explanation Data
Value Type

14 14 i32

14u8 14 u8

014 12 octal u32

014i8 12 octal i8

0x14 20 hexadecimal u32

_ -2147483648 −231 (missing) i32

8.1.2 Floating-point Scalar Constants
A floating-point scalar constant can represent ∞, NaN or
a normal finite value. A finite value is represented by a
mantissa, optionally followed by an exponent. There can be
a data-type suffix on any floating-point scalar constant. If
this suffix is omitted the data-type is f64 (64-bit float).

A mantissa can be written in either decimal or rational form.
A rational mantissa consists of two integers separated by r

and represents their ratio.

The letter e indicates an exponent with base 10. The letter
p indicates an exponent with base π.

Examples of floating-point scalar constants are:

Constant Displayed Explanation Data
Value Type

4.0 4 f64

4f32 4 f32

2r3 0.666667 2
3

f64

1e4 10000 1× 104 f64

1p1 3.14159 1× π1 f64

180p-1 57.2958 180× π−1 f64

1r3p1f32 1.0472 1
3
× π1 f32

1i Inf ∞ f64

1if32 Inf ∞ f32

1n _ NaN f64

1nf32 _ NaN f32

8.1.3 Numeric Array Constants
Tcl uses nested braces (‘{}’) to represent lists. NAP uses
braces in a similar manner to represent n-dimensional con-
stant arrays. The elements of array constants have the same
form as scalar constants.

A vector (1-dimensional array) constant is enclosed by one
level of braces. An example is ‘{2 -7 8}’.

A matrix (2-dimensional array) constant is enclosed by two
levels of braces. An example is ‘{{1 3 5}{2 4 6}}’.

An n-dimensional array constant is enclosed by n levels of
braces.

8.1.4 String Constants
String constants are enclosed by either two apostrophes (e.g.
’Hello world’) or two grave accents (e.g. ‘Hello world‘).
String constants have the data-type c8 (8-bit character).
They are 1-dimensional (vectors) but other ranks can be
produced using the function reshape.

8.2 Operators
The table on the right is essentially a superset of Table 5.2
in Ousterhout [13]. As there, groups of operators between
horizontal lines have the same precedence; higher groups
have higher precedence.

Operators are left-associative unless specified otherwise.

The nature of arguments is indicated as follows:
a and b represent general arrays.
x and y represent scalars.
u and v represent vectors.
A and B represent matrices.
n represents a Tcl name, which may include namespaces.
p represents a boxed vector of pointers to arrays.

‘AP’ means arithmetic progression.

The value of the remainder r = a%b is defined for all real
finite a and b so that:
If b > 0 then 0 ≤ r < b
If b = 0 then r = 0
If b < 0 then b < r ≤ 0

The link operators ‘,’ and ‘...’ are identical except for
precedence. ‘,’ is used to separate function arguments and
the subscripts of cross-product indices. ‘...’ is used to
specify the step size of arithmetic progressions, as in:

% [nap "3 .. 9 ... 2"]

3 5 7 9

The following example illustrates the difference between ‘//’
and ‘///’.

% [nap "{5 2} // {9 8}"]

5 2 9 8

% [nap "{5 2} /// {9 8}"]

5 2

9 8

8.2.1 Inverse Indexing Operators ‘@’, ‘ @@’ and ‘@@@’
These three operators take a vector left argument. The re-
sult is a subscript of this vector. The unary case will be
discussed in the section on indirect indexing.

The ‘@’ interpolated subscript operator requires a sorted left
argument. The result of v@b is the f32 subscript s such that
vs = b. For example:

Syntax Result

a**b ab Right-associative
-a Negative of a
!a Logical NOT: 1 if a is zero, else 0
~a Bit-wise complement of a
#a Frequencies of values 0, 1, 2, . . .
@a indirect subscript
@@a indirect subscript
v@b s such that vs = b, where v is ordered vector
v@@b i32 s for which |vs − b| is least
v@@@b smallest i32 s for which vs = b
[a]...[b] Boxed vector pointing to a and b
x..y AP from x to y in steps of +1 or -1

x..p AP from x to value pointed to by p0

in steps of value pointed to by p1

u#v u copies of v
p#b Cross-product replication
u+*v (u and v vectors) Scalar (dot) product
A+*B (A and B matrices) Matrix product
a*b a× b
a/b a÷ b
a%b Remainder r after dividing a by b
a+b a+ b
a-b a− b
a<<b Left-shift a by b bits
a>>b Right-shift a by b bits
a<<<b Lesser of a and b
a>>>b Greater of a and b
a<b 1 if a < b, else 0
a>b 1 if a > b, else 0
a<=b 1 if a ≤ b, else 0
a>=b 1 if a ≥ b, else 0
a==b 1 if a = b, else 0
a!=b 1 if a 6= b, else 0
a&b Bit-wise AND of a and b
a^b Bit-wise exclusive OR of a and b
a|b Bit-wise OR of a and b
a&&b Logical AND: 1 if a 6= 0 and b 6= 0, else 0
a||b Logical OR: 1 if a 6= 0 or b 6= 0, else 0
a?b:c Choice: if a 6= 0 then b, else c
a//b Concatenate along existing dimension
a///b Concatenate along new dimension
[a],[b] Boxed vector pointing to a and b
n=a Result is a. Right-associative

Side Effect: Set n to OOC-name of a

% [nap "{1.5 3.4 3.6 4} @ 3.5"]

1.5

The result is 1.5 because 3.5 is halfway between 3.4 (sub-
script 1) and 3.6 (subscript 2).

The ‘@@’ closest operator is defined so that v@@b gives the
i32 subscript s for which |vs − b| is least. For example:

% [nap "{1.5 3.4 0 2.4 -1 0} @@ {2 -99}"]

3 4

Element 3 has the value 2.4, which is the closest to 2. Ele-
ment 4 has the value -1, which is the closest to -99.

The ‘@@@’ match operator is defined so that v@@@b gives the
smallest i32 subscript s for which vs = b. For example:

% [nap "{3 2 9 2 0 3} @@@ {0 3 2}"]

4 0 1

Element 4 is the only 0, element 0 is the first 3 and element
1 is the first 2.

8.2.2 The ‘#’ Operator
The unary tally ‘#’ operator produces a frequency table. It
tallies the number of 0s, 1s, 2s, . . . as in the following:

% [nap "#{2 5 4 5 2 -3 0 2}"]

1 0 3 0 1 2

There is one zero, no ones, three twos, no threes, one four
and two fives. Note that the negative value (-3) is ignored.

The binary replicate ‘#’ operator treats the left argument as
the number of required replications of the right argument.
The arguments can be vectors or scalars. The result is a
vector.

Note that one can use this operator to select from a vector
those elements which satisfy some condition. The following
example selects the even elements:

% nap "x = {9 1 0 2 3 -8 0}"

::NAP::286-286

% [nap "(x % 2 == 0) # x"]

0 2 -8 0

This works because the left-hand argument is:

% [nap "(x % 2 == 0)"] value

0 0 1 1 0 1 1

8.3 Built-in Functions
8.3.1 Elemental Functions

An elemental function is one in which

• the result has the same shape as the argument(s)

• each element of the result is defined by applying the
function to the corresponding element of the argument

The standard mathematical functions provided by the expr

command are all provided by NAP as elemental functions.
Additional elemental functions provided by NAP include:

Function Result
isnan(x) 1 if x is NAN, else 0
random(x) random number r such that 0 ≤ r < x
sign(x) (x > 0)− (x < 0)

There are also elemental functions for data-type conversion,
with the same names as the data-types. The following exam-
ple uses function u8 to display the ASCII codes for ’abcdef’
and then reverses this process using function c8:

% [nap "u8(’abcdef’)"]

97 98 99 100 101 102

% [nap "c8(97 .. 102)"]

abcdef

8.3.2 Reduction and Scan Functions
A reduction or insert function is one which has the effect of
inserting a binary operator between the cells of its argument.
If the argument is a vector then its elements are the cells
and the result is a scalar. If the argument is a matrix then
its rows are the cells and the result is a vector containing the
sum of each column. Such functions are termed reductions
because the result has a rank which is one less than the
argument.

The NAP reduction functions are:

Function Result
count(x[, r]) Number of non-missing elements
max(x[, r]) Maximum
min(x[, r]) Minimum
prod(x[, r]) Product
sum(x[, r]) Sum

The optional second argument of reduction functions is called
the verb-rank (as in J). It specifies the rank of the sub-arrays
(cells) to which the process is applied. In the case of a matrix
argument, one can specify a verb-rank of 1 to get processing
of rows rather than columns.

NAP currently has only one scan function, psum, which pro-
duces partial sums.

8.3.3 Metadata Functions
Metadata functions return information (other than data val-
ues) from a NAO. The same information can be obtained us-
ing an OOC, but these functions are more convenient within
expressions. An example is function shape(x) which returns
the shape of x (as a vector).

8.3.4 Functions which change shape or order
Function Result
sort(x) Sort x into ascending order
reshape(x) Spread the elements of x into

a vector with shape nels(x)
reshape(x,s) Reshape the elements of x into

an array with shape s
transpose(x) Reverse the order of dimensions of x
transpose(x,p) Permute the dimensions of x to

the order specified by p

8.3.5 Linear-algebra Functions
The function solve_linear(A[,B]) solves a system of linear
equations defined by matrix A and right-hand-sides B. B
can be either a vector or a matrix (representing multiple
right-hand sides). If B is omitted then the result is the
matrix inverse.

8.3.6 Correlation
Function correlation(x[, y, [lag0, lag1, . . .]]) calculates
Pearson product-moment correlations between either:

• two arrays of the same shape (treated as vectors)

• the columns of a matrix

• an array and a moving window within it

8.3.7 Grid Functions
There is currently just one grid function, invert_grid, but
it has variants for one and two dimensions. The function
defines a piecewise (bi-)linear mapping as the inverse of a
given piecewise (bi-)linear mapping.

8.3.8 Functions related to Special Data-types
Function Result
open_box(x) NAO pointed to by boxed NAO x
pad(x) Normal NAO corresponding to ragged x
prune(x) Ragged NAO corresponding to normal x

8.4 Indexing
Indexing is the process of selecting elements of an array for
extraction or modification. NAP extends this concept to
the estimation (using interpolation) of values between the
elements.

An index can appear:

• within a NAP expression

• as an argument of an OOC. E.g. method set value

takes an an argument which specifies which elements
are to be modified

• as an argument (specifying positions within a file) of
commands ‘nap_get hdf’ and ‘nap_get netcdf’

8.4.1 Dimension-Position
A dimension-position is a scalar value defining the position
along a dimension. Fractional values are valid and represent
positions between the array elements. Values at non-integral
positions are estimated using n-dimensional linear interpo-
lation. The following demonstrates this:

% nap "vector = {2 -5 9 4}"

::NAP::41-41

% [nap "vector 2.5"]

6.5

%

Note that the dimension-position 2.5 is halfway between 2

(corresponding to the value 9) and 3 (corresponding to the
value 4). Thus the value is estimated to be
0.5 × 9.0 + 0.5 × 4.0 = 6.5 using ordinary one-dimensional
linear interpolation.

8.4.2 Subscript
A subscript is similar to a dimension-position except that
there are no size limits. The corresponding dimension-position
is defined by subscript%s, where s is the dimension-size.
Note that dimension-positions can only be defined via sub-
scripts.

Thus in our example subscript 6 is treated as 6%4 = 2. So
we get

% [nap "vector 6"]

9

It also means that negative values can be use to index back-
ward from the end, as shown by:

% [nap "vector(-3)"]

-5

8.4.3 Elemental Index
An elemental index of an array of rank r is a vector of r
subscripts specifying an element of the array. The follow-
ing example creates a matrix mat and illustrates the use of
elemental indices to extract individual elements.

% nap "mat = {{1.5 0 7}{2 -4 -9}}"

::NAP::60-60

% $mat

1.5 0.0 7.0

2.0 -4.0 -9.0

% [nap "mat {0 1}"]

0

% [nap "mat {1 -1}"]

-9

% [nap "mat {0.5 1.5}"]

-1.5

The value corresponding to the index 0.5 1.5 is estimated,
using bilinear interpolation, to be
0.25×0.0+0.25×7.0+0.25× (−4.0)+0.25× (−9.0) = −1.5

8.4.4 Index
An index is an array defining one or more elemental indices.
There are three types: shape-preserving (index of vector),
full and cross-product. Full and cross-product indices are
two methods of indexing arrays with multiple dimensions.

8.4.5 Shape-Preserving Index
Shape-preserving indexing is used to index a vector. The
shape of the result is the same as that of the index. The
following example shows how the previously defined variable
vector can be indexed by

• a scalar to produce a scalar

• a 3-element vector to produce a 3-element vector

• a 2× 3 matrix to produce a 2× 3 matrix:

% $vector

2 -5 9 4

% [nap "vector 2"]

9

% [nap "vector {2 2.5 2}"]

9 6.5 9

% [nap "vector {

{1 0 2.5}

{-1 2 1}

}"]

-5.0 2.0 6.5

4.0 9.0 -5.0

8.4.6 Full Index
A full-index is an array specifying a separate elemental index
for every element of the result. The shape of the index is the
shape of the result with r (the rank of the indexed array)
appended. Each row of the index contains a vector of r
elements defining an elemental index.

The following example shows how the previously defined
variable mat can be indexed by

• a vector to produce a scalar

• a matrix to produce a vector

% $mat

1.5 0.0 7.0

2.0 -4.0 -9.0

% [nap "mat {0.5 1.5}"]

-1.5

% [nap "mat {

{0.5 1.5}

{0 1}

{-1 -1}

}"]

-1.5 0 -9

8.4.7 Cross-product-index
A cross-product-index of an array of rank r is a boxed r-
element vector pointing to scalars, vectors and nulls. The

cross-product combination defines the elemental indices of
the indexed array.

A cross-product-index is usually defined using the opera-
tor ‘,’. This operator allows the left and/or right operand
to be omitted and such null (missing) operands are treated
as 0..s-1, where s is the dimension-size, giving the entire
dimension. Scalar operands produce no corresponding di-
mension in the result.

The following example selects

• rows 1 and 0

• columns 2, 0 -1 and 0

% $mat

1.5 0.0 7.0

2.0 -4.0 -9.0

% [nap "mat({1 0},{2 0 -1 0})"]

-9.0 2.0 -9.0 2.0

7.0 1.5 7.0 1.5

8.4.8 Indirect Indexing
Indirect indexing simplifies the use of coordinate variable
values in index expressions. For example, suppose we have
temperatures at 2-hourly intervals from time 10:00 to 16:00
as follows:

% nap "t = {20.2 21.6 24.9 22.7}"

::NAP::159-159

% $t set coord "10 .. 16 ... 2"

We could estimate temperatures every hour during this pe-
riod as follows:

% [nap "t(coordinate_variable(t)@(10..16))"] value

20.2 20.9 21.6 23.25 24.9 23.8 22.7

Indirect indexing allows us to omit the left argument of op-
erators @ and @@ in such expressions. Thus:

% [nap "t(@(10..16))"] value

20.2 20.9 21.6 23.25 24.9 23.8 22.7

9. NAP LIBRARY OF TCL CODE
This library consists of about seventy Tcl procedures defin-
ing NAP functions and providing other tools for NAP. These
include:

• statistics functions

• fortran binary I/O

• map projections

• plot nao for visualisation of NAOs

• make dll which defines a new Tcl command based on
C or Fortran code

10. CONCLUSIONS
Tcl has not generally been considered suitable for large-scale
mathematical processing. However the development of NAP
has shown that Tcl is a suitable framework for the develop-
ment of mathematical tools. Tcl variables can be used by
setting them to array object handles rather than the actual
data. These array objects can have associated commands to
display, transmit and modify their contents.

NAP has been developed into a very flexible, efficient and
user-friendly tool for the mathematical processing of large
volumes of array data. NAP can be considered a language
within the Tcl language, but NAP’s conventions are de-
signed to match those of Tcl and the integration into the
Tcl environment works very well.

11. ACKNOWLEDGMENTS
The author would like to thank his CSIRO colleagues Peter
Turner, Ian Grant and Martin Dix. Peter played an im-
portant role in the development of NAP. Ian and Martin
reviewed this paper and NAP documentation. The author
would also like to thank Russ Rew of the UCAR Unidata
Program Center for encouraging the author’s software devel-
opment efforts and enabling the author to become involved
in the development of netCDF.

12. REFERENCES
[1] H. L. Davies. FAN - An Array-oriented Query

Language. In G. Grinstein, U. Lang, and A. Wierse,
editors, Second Workshop on Database Issues for Data
Visualization. IEEE, Oct 1995.

[2] H. L. Davies. Infinity Arithmetic, Comparisons and J.
APL Quote Quad, 25(4):28–34, 1995.

[3] H. L. Davies. Tcl-nap Project. URL:
http://tcl-nap.sourceforge.net/, 2002.

[4] Eric Thiébaut. TiM, a Tcl extension for image/matrix
processing. URL: http://www-obs.univ-lyon1.fr/
~thiebaut/TiM/TiM.html, 1996.

[5] R. S. Francis, I. D. Mathieson, P. G. Whiting, M. R.
Dix, H. L. Davies, and L. D. Rotstayn. A Data
Parallel Scientific Modelling Language. J. of Parallel
and Distributed Computing, 21:46–60, 1994.

[6] D. Goldberg. What Every Computer Scientist Should
Know About Floating-Point Arithmetic. ACM
Computing Surveys, 23(1):5–48, 1991.

[7] G. A. Howlett. Data Objects. In Proceedings of the
Sixth Annual Tcl/Tk Workshop. USENIX, Sep 1998.

[8] B. G. Hunt and H. L. Davies. Mechanism of
multi-decadal climatic variability in a global climate
model. International Journal of Climatology,
17(6):565–580, 1997.

[9] K. E. Iverson. J Introduction and Dictionary. Iverson
Software Inc., Toronto, 1996.

[10] J. R. Levine, T. Mason, and D. Brown. lex & yacc.
O’Reilly and Asssociates, Sebastopol Calif., 2nd
edition, 1992.

[11] N. D. McKay. Tcl/Tk Extensions for Visualization of
Large Data Sets. In O’Reilly Open Source Convention.
O’Reilly and Associates, Inc, July 2001.

[12] National Center for Supercomputing Applications.
HDF Home Page. URL:
http://hdf.ncsa.uiuc.edu/hdf4.html, 2002.

[13] J. K. Ousterhout. Tcl and the Tk Toolkit.
Addison-Wesley, Reading, MA, USA, 1994.

[14] Research Systems, Inc. IDL. URL:
http://www.rsinc.com/idl/index.asp, 2002.

[15] The MathWorks, Inc. The MathWorks. URL:
http://www.mathworks.com/, 2002.

[16] P. J. Turner and H. L. Davies. Advances in CAPS. In
T. R. McVicar, editor, Proceedings of the Land EnvSat
Workshop: 10th Australasian Remote Sensing
Photogrammetry Conference, Adelaide, pages 71–80,
Canberra, A.C.T., Australia, 2000. CSIRO Land and
Water.

[17] P. J. Turner, H. L. Davies, P. C. Tildesley, , and
C. Rathbone. Common AVHRR processing software
(CAPS). In T. R. McVicar, editor, Proceedings of the
Land AVHRR Workshop: 9th Australasian Remote
Sensing Photogrammetry Conference, Sydney, pages
51–58, Canberra, A.C.T., Australia, 1998. CSIRO
Land and Water.

[18] Unidata Program Center, University Corporation for
Atmospheric Research. NetCDF. URL:
http://www.unidata.ucar.edu/packages/netcdf/

index.html, 2002.

