
Using Tcl for Test Automation of a Large
Fiber-Optic Switching System

Hugh Dunne
Ciena Corporation

10480 Ridgeview Court
Cupertino CA 95014

hdunne@ciena.com

ABSTRACT

We describe a Tcl-based test automation system for fiber-optic

telecommunications equipment.

Keywords

Test Automation, SONET, CORBA, TL1, TclBlend, Expect

1. INTRODUCTION

Ciena Corporation's Core Director™ is an intelligent, high-

performance optical networking core switch. It offers state-of-

the-art capabilities for real-time provisioning and grooming of

fiber-optic networks, supports a wide range of optical interfaces,

replaces the functionality of diverse legacy equipment, and

dramatically reduces the cost of deploying, operating, and scaling

optical networks.

Physically, the Core Director occupies a standard

telecommunications equipment bay and can accommodate up to

32 line module cards, each of which can hold up to 8 optical

modules. Each optical module has a transmit and a receive port

where data is converted between optical and electronic format. A

smaller version, the Core Director CI, is roughly half the size and

hosts fewer optical modules, but has the same management

interfaces:

• CORBA

• TL1

• Proprietary command line interfaces for debugging

• HTTP

• Proprietary XML-like interface

• GUI client written in Java

• NBI (North-Bound Interface) - an IDL-based network

management system

When a Core Director powers up, it uses discovery protocols to

exchange information with other nodes and form an internal map

of the network. This allows sophisticated route optimization and

protection policies to be implemented automatically.

2. TESTING THE SYSTEM

Testing this system presents a number of challenges. It must pass

a large suite of tests to demonstrate standards compliance. It

supports a rich set of interfaces, all of which must be exercised.

In addition, the test automation infrastructure must interface with

a large database of test cases, and with various pieces of test

equipment which are used to generate traffic to the system under

test and to simulate error conditions.

The test infrastructure must also deal with multiple versions of the

target system in heterogeneous networks, and even with the

possibility that an individual node may have its version upgraded

during the course of a test, since it is required to allow upgrading

without dropping traffic.

Multiple modes of testing must be supported, including daily

sanity tests, regression and stress tests, long-running standards-

driven test suites, and informal on-the-fly tests. The test system

should be easily used by engineers without significant

programming background. It should be highly configurable to

deal with an environment in which the availability of physical

resources changes rapidly. It should offer a migration path from

fully manual to fully automated testing, to overcome user

resistance.

3. ADVANTAGES OF TCL

Tcl offers many advantages in this environment:

• It allows rapid prototyping and development.

• It is easy to learn and use.

• It is an ideal glue language and can interface with virtually

anything.

• It is powerful and flexible.

• Performance is acceptable in most cases.

• Critical sections can be recoded in a compiled language

without having to overhaul the rest of the system.

4. CODE ORGANIZATION

The code for the Test Automation Tool (TAT) is organized

hierarchically. At the lowest level are packages supplying

procedures for interacting directly with the system under test

through its various interfaces. Utility packages provide commonly

used procedures, e.g. for creating or parsing common types of

Java objects. Another layer of packages correspond to the services

running on the node, which correspond to the various connection

entities that must be created and configured to provision a

network, such as cross-connections, subnetwork connections etc.

Packages at this level can be used for simple, on-the-fly tests

where a small number of connection entities are set up, used and

torn down, and the results are monitored in real time.

For tests which make significant demands on system resources, a

further layer of packages allows test suites to be packaged and run

in batch mode. These tests are organized according to the major

feature that is being tested, such as fault management and the

various types of protection schemes. Lower-level procedures are

called, the results are compared with expected values, and the test

status is recorded. Another layer of packages provides utilities for

batch tests, including setup, logging, and a Tk-based interface for

point-and-click launching of test suites.

Since many dozens of packages exist, their pkgIndex.tcl

files have been consolidated into a single file at the top of the

hierarchy. This avoids the need for having an unmanageably large

auto_path which is subject to frequent changes. The single

pkgIndex.tcl file is auto-generated by a script which

traverses the hierarchy and notes the location and version number

of every package. Editing of the index file by hand is discouraged

since an error can destroy the integrity of the file and prevent

many packages from loading.

Coding standards and conventions are important in keeping our

large and ever-increasing code base maintainable. Packages

follow a standard template, with package and procedure headers

documenting the code, explaining procedure usage and including

maintenance notes. Each package defines its own namespace and

gathers internal variables together in an array which is private to

the package. The namespace export command is used to

indicate which procedures in a package may be called from

outside the package, and other procedures should be considered

for internal use only, even though Tcl does not enforce this.

5. SYSTEM INTERFACES

5.1 CORBA

CORBA (Common Object Request Broker Architecture) is a

standard for distributed computing developed by the Object

Management Group. It allows a client to invoke a method

transparently on a server object, which may be local or remote. A

CORBA module is specified by its IDL (Interface Definition

Language), which describes the services offered by the module in

a language-neutral manner. The CORBA architecture allows

interoperability between applications on different machines in

heterogeneous distributed environments.

Each Core Director node has an on-board CORBA server which is

the principal management interface for configuring and

provisioning the node. For security reasons a CORBA naming

service is not provided. Instead, a web server runs on each node

and serves the IORs for each CORBA module on a password-

protected page.

Although Tcl can interface directly with a CORBA server using

the Combat extension [3], we have found it advantageous to use

Java and TclBlend [1] as a middle layer. Many of the CORBA

methods provided by the server take complex arguments with

considerable nesting of data structures. Using TclBlend it is

simple to build up complex Java objects and extract particular

pieces of data from returned objects. Also, Java’s introspection

facilities are very useful during prototyping and debugging, and

the Tcl code is more understandable when compared with the

IDL.

Another reason for using Java is that in order to receive

asynchronous alarms and events, we must register a callback

object with the CORBA server. We use a simple handler, written

in Java, which stores event data in a buffer as it is received.

Accessor methods allow the buffer to be queried from Tcl. In this

way asynchronous events may be dealt with synchronously. This

is important as many tests involve triggering an error condition

and verifying that the correct alarm has been observed. Obviously

such tests should be able to run in batch mode without human

monitoring or intervention.

The Test Tool uses the http and base64 packages to connect to the

node’s web server, supply an authentication string, and retrieve

the IORs for all CORBA modules running on the server. Java

methods are then called (via TclBlend) to convert the IOR string

to a generic CORBA object and narrow it to a reference to a

remote object. The methods of the object can then be invoked just

as if it were local.

The Test Tool provides a package for each CORBA module

running on the server. The procedures in each such package are

basically wrappers for the methods in the corresponding module.

The caller invokes the procedures with simple arguments (strings,

lists etc.), the arguments are processed into the required Java data

structures, the method is invoked with these arguments, and the

significant data is extracted from the return value and returned to

the caller in human-readable format.

5.2 North-Bound Interface

The North-Bound Interface is also CORBA-based but is network-

oriented rather than node-oriented. It resides on a dedicated server

and mediates between customer monitoring systems and the nodes

of the network, and also encapsulates the database in which

system events are stored. It provides methods for discovering and

invoking network services, and aggregates events and alarms

from the network nodes. The North-Bound Interface is the

preferred interface for monitoring large networks.

5.3 XML Interface

This interface is based on a proprietary, binary-encoded XML

format and will eventually replace the CORBA interface on each

node. It will allow multiple nodes to be aggregated as a single

virtual node.

As with the CORBA interface, we use TclBlend and Java as a

middle layer. XML parsing is performed by Java classes and low-

level utility packages. At a higher level, packages are provided

which correspond to the modules running on the server. Though

the same set of services exist as on the CORBA servers, the

interface is quite different and thus the internals of the packages

are different. However, care has been taken to ensure that the

packages present the same interface as earlier versions which

interact with CORBA servers, and thus higher-level packages

which implement test suites can continue to use these packages

without needing modification.

5.4 Command Line Interfaces

The Core Director implements TL1, a standard protocol for

interacting with telecommunications equipment. It also

implements a number of proprietary interfaces which are not

exposed to customers. These interfaces allow debugging and

diagnostics, software upgrades, and similar functions.

All of these interfaces can be accessed from a telnet session, and

thus can be automated with Expect [2]. Various packages have

been written which encapsulate the process of issuing Expect

commands and hide the sometimes arcane details of the protocols,

providing the user with a simplified interface for exercising TL1

commands and other facilities of the command line interfaces.

TL1 provides a very rich set of commands and parameters, and

exhaustive testing of the interface is not feasible by manual

means. Even automated testing cannot exhaust all combinations

of commands and parameters in a reasonable length of time, but it

is essential for exercising a sufficiently large subset to give us

confidence that the TL1 interface is working correctly.

5.5 GUI Client

Node Manager, a client written in Java, is shipped with the Core

Director. We use SilkTest, a proprietary third-party tool, for

testing the client. This tool can generate Windows events to

simulate user interaction with the client, and perform screen

scraping to check the client display. SilkTest is in turn controlled

by a Tcl package which can issue commands in batch mode and

determine the response of the client.

5.6 HTTP Interface

As mentioned above, each Core Director node has an on-board

web server which serves IORs on a password-protected page so

that clients can connect to the CORBA server. The web server can

also provide some system information such as the build version

running on the server, and diagnostic information such as details

of the last assert.

5.7 Abstract Interface

There is significant overlap in functionality between the various

interfaces. This allows tests in which we use one interface to

exercise a service, and another to check the result. This cross-

checking enhances our confidence in our test results, and it is

desirable to make such tests easier to develop.

The concept of the abstract interface is that the particular

management interface (CORBA, TL1 etc.) used to invoke a given

service should be abstracted out, and should simply be another

parameter passed to the procedure which wraps the service. Hence

the abstract interface has been created as a package which resides

one level higher than the packages which wrap particular

management interfaces. To invoke a service we specify an

interface as the first argument, and the remaining arguments

contain the data needed to invoke the service, in a format which is

neutral in respect to the interface used. The Abstract Interface

package then reformats the data as necessary and calls a

procedure in the package which handles the selected interface.

The benefits of this scheme are that test suites may be developed

more rapidly and greater coverage achieved, with less of a

learning curve for the test script writer. For example a simple

sanity test may consist of looping over all available interfaces,

exercising the same service on each interface with the same

arguments.

6. THE MASTER-SLAVE
ARCHITECTURE

6.1 Problems with heterogeneous networks

Many test cases require the use of multiple nodes, and a problem

arises when the network contains two or more nodes running

different versions of the CORBA server. Each version requires a

different value for the CLASSPATH environment variable in the

Test Tool process, and TclBlend does not allow the CLASSPATH

to be changed dynamically. As noted above, the CORBA version

running on a node may change during the course of a test. Having

to determine the version and perform a switch statement based on

the result would rapidly lead to bloated and unmaintainable code.

The solution we have implemented is to share the responsibility

among several processes which cooperate in a master-slave

architecture and communicate over sockets. The initial Tcl

process started by the user is designated the master process. When

the user issues a command e.g. to create a connection termination

point (CTP) on the node, the master process queries the node to

determine the IDL version. It then checks whether a slave process

exists to handle that version. If not, it uses the exec command to

fork another Tcl process, the slave, with a CLASSPATH

environment variable set up appropriately for the IDL version.

The slave creates a server which can execute commands passed to

it from the master. (For security, connection requests which are

not from the local host are rejected.) The master then passes the

user’s command over a socket to the slave instead of passing it

directly to the node. The slave issues the command to the node,

gets the response, and passes it back over the same socket to the

master. Finally the master passes the response to the user.

Note that a single slave process may address different nodes if

they are running the same IDL version. The following diagram

shows a schematic view of the setup.

Figure 1. The master-slave architecture.

This entire process is transparent to the user; the package

interface is the same as when a single process is used. The only

difference is that in the single-process case, the user must know

which IDL version is running on the target node and select the

corresponding version of the test tool package (by using the

command e.g. package require –exact CTP 2.3). If no

package version number is specified, the highest-numbered

version is loaded; this is the version which implements the

master-slave scheme.

6.2 Expect

Another use of the master-slave architecture is in overcoming

limitations of Expect support on Windows. Expect on Windows

NT is only supported for Tcl 8.0 while TclBlend is one of several

factors forcing us to use later versions of Tcl. To solve this

problem we provide a wrapper package around Expect and

prohibit other packages from using Expect directly. This wrapper

package functions as the master. It forks a single slave process

which runs Tcl 8.0 and creates a server as described in the

previous section. The master process passes Expect commands to

the slave, which executes them and returns the result to the

master.

6.3 North-Bound Interface

The master-slave architecture is applicable to a variety of

situations where a solution involving a single process would not

be powerful enough or would lead to excessively complex and

unmaintainable code. By using cooperating master and slave

processes we can take a building-block approach to extending the

functionality of the system and rapidly deploy powerful tools

without having to maintain a large monolithic program.

A limitation of TclBlend is that it can hang the Tcl session if a

large number of java objects is created in a short time. This is a

problem with the NBI since events are aggregated from several

nodes, and this large numbers of events may be received by the

client.

To overcome this problem, a modified master-slave approach is

used. A master Tcl process controls a system of cooperating slave

processes, including a Java process which interfaces directly with

the NBI server. The Java slave may easily be made multi-threaded

using standard Java classes. Each thread communicates with a

slave process, written in pure Tcl, which provides parsing and

filtering services using Tcl’s powerful regular expression features,

and also simplifies the collection of performance statistics using

Tcl’s time command. By running the Java Virtual Machine in its

own process we avoid problems with TclBlend being

overwhelmed by too many objects. This sharing of responsibility

uses the strengths of Tcl and Java while overcoming some of the

weaknesses of each language.

7. CONCLUSION

The Test Automation system has evolved from a small prototype

into a large suite of libraries and scripts totaling over 100,000

lines of code, developed by several programmers in different

geographic locations. Its user base has also grown. Originally a

tool for supporting the test and validation team, it has come to be

indispensable for meeting testing deadlines, for enabling

developers to get immediate feedback on new functionality, for

running basic smoke and sanity tests on new builds before

submitting them to full test suites, for provisioning fully-loaded

nodes and large networks (which would be a very lengthy and

tedious process using a GUI) and as an aid to tech support

personnel in the field.

The main lessons learned from this project are as follows.

Close liaison with development is essential. In a dynamic

environment where new versions of the system under test may

force an overhaul of the test automation infrastructure, the

automation team must stay in the loop and be proactive regarding

changes to the system under test that will have a major impact on

how testing is done. Development engineers are often unfamiliar

with Tcl, and unaware for example that it is an interpreted rather

than a compiled language. One consequence of this fact is that

mismatches between the test tool and the target will not be caught

at compile time (since of course there is no compile time) but may

manifest themselves in unpredictable ways at run time. Good

communication between developers and the automation team, and

an understanding of the dynamic nature of Tcl, are very important

for tracking down the cause of unexpected behavior.

User education is also essential and must be an ongoing process.

The initial version of the Test Tool required a fair amount of

manual setup by the user. The process of installing and setting up

the tool has been considerably automated and simplified but this

does not eliminate the need to document the tool. Detailed

instructions for installing the tool, lists of common problems and

their solutions, and tools for browsing the available test libraries

have all proven useful in familiarizing users with the tool. This

familiarity is reinforced by periodically emailing the user

community with troubleshooting checklists and pointers to the

various resources available.

Finally, backward compatibility is a virtue, but good judgment

must be shown when the point of diminishing returns is reached.

As the system under test has developed, we have taken care to

ensure that previously developed test scripts and packages remain

useful in spite of changes, but when changes in the underlying

system accumulate past a certain point, a clean break with the

previous version of the tool is less painful in the long run than

continuing to try to accommodate changes incrementally.

Fortunately Tcl’s power and flexibility, in conjunction with its

rapid prototyping strengths, support both types of change, in

effect giving us the best of both worlds.

8. ACKNOWLEDGMENTS

The author thanks Ciena Corporation and in particular Chris Cook

and Richard Genet for their support in preparing this paper.

9. ABBREVIATIONS

CORBA Common Object Request Broker Architecture
CTP Connection Termination Point
HTTP HyperText Transport Protocol
IDL Interface Definition Language

IOR Inter-ORB Representation
NBI North-Bound Interface
ORB Object Request Broker
TAT Test Automation Tool

10. REFERENCES

[1] Dejong, Mo and Hylands, Christopher. TclBlend.
http://www.tcl.tk/software/java/

[2] Libes, Don. Exploring Expect. O’Reilly & Associates, 1994.

[3] Pilhofer, Frank. Combat. http://www.fpx.de/Combat.

http://www.tcl.tk/software/java/
http://www.fpx.de/Combat

	INTRODUCTION
	TESTING THE SYSTEM
	ADVANTAGES OF TCL
	CODE ORGANIZATION
	SYSTEM INTERFACES
	CORBA
	North-Bound Interface
	XML Interface
	Command Line Interfaces
	GUI Client
	HTTP Interface
	Abstract Interface

	THE MASTER-SLAVE ARCHITECTURE
	Problems with heterogeneous networks
	Expect
	North-Bound Interface

	CONCLUSION
	ACKNOWLEDGMENTS
	ABBREVIATIONS
	REFERENCES

