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ABSTRACT
This paper describes some of the lessons we learned in
implementing two different Tcl-based test frameworks used to
automate testing of the Deep Space Network's new Uplink
Subsystem, and discusses the advantages and disadvantages of
each.  The first framework was external to the Uplink Subsystem's
software and provided complete control of the environment; the
second was integrated with the software and provided less control,
but motivated more and better testing.  Some implementation
details of the second framework are discussed as well.  

1. BACKGROUND
1.1 The Deep Space Network
The Deep Space Network (DSN) is NASA’s primary ground
system for spacecraft telecommunications. A world-wide network
of antennas and related hardware and software, it consists
primarily of an operations center at the Jet Propulsion Laboratory
(JPL),  three Deep Space Communications Complexes (DSCC’s)
in California, Spain, and Australia, and the voice and data
networks which connect them.  The DSN is primarily used for
tracking NASA spacecraft, but also supports the European Space
Agency (ESA) and others.

1.2 Spacecraft Tracking
Each DSN complex operates a number of dish antennas and
related “subsystems”. Each subsystem is a collection of hardware
and software which supports one element of a successful track.
The antenna pointing subsystem, for example, is responsible for
keeping the antenna pointed at the spacecraft; the telemetry
subsystem is responsible for decoding the spacecraft’s downlink
signal and forwarding the telemetry data to JPL. Some of these
subsystems are associated with a particular antenna; others can be
assigned to work with any antenna. Overseeing everything is  a
DSN operator sitting at a  Monitor and Control (M&C)
workstation.

First, an antenna and all necessary subsystems are “assigned” to
track a specific spacecraft, and given over to a particular DSN
operator.  The operator must then configure and calibrate the
subsystems to support the track.  During the track itself, the
operator monitors the assigned subsystems for hardware failures
and other problems, and occasionally takes other steps, such as
enabling the modulation of command data onto the carrier signal
for uplink to the spacecraft.  At the end of the track, the
subsystems are unconfigured and returned to the pool for
assignment.

1.3 The Monitor and Control Protocol
All communication between the operator and the subsystems is
via the Monitor and Control Protocol.  This protocol is
implemented by a multi-threaded, socket-based API, and carries
five basic kinds of message:

“Configuration Control Notices” are sent by M&C to the
subsystems to assign them to support a track, and later to unassign
them again.

“Event Notices” are sent by subsystems to M&C to notify the
operator of progress made or of problems observed.  There are a
number of kinds of event notice, each with a specific purpose and
level of severity, but fundamentally each is a text message
intended to be read by the operator.

“Operator Directives” are requests for action sent by M&C to the
subsystems.  “Commands” would be the more normal term, but in
this domain the word “command” is exclusively used to mean
“data sent to a spacecraft.”  An operator directive is a text string
consisting of the directive name and zero or more arguments.
Operators have historically typed directives in by hand.

“Directive Responses” are sent by subsystems to M&C in
response to operator directives.  There are several categories of
response, ranging from REJECTED to PROCESSING to
COMPLETED.  Colloquially, a directive is said to be accepted if
the subsystem attempts to carry it out, and rejected otherwise.
Each response includes a text message intended to be read by the
operator.

“Monitor Data Segments” convey detailed configuration, status,
and performance information.  Each segment consists of one or
more “monitor data items”.  Each item is named, and may be a
text string, an integer, a floating point number, or one of several
DSN-specific enumerated types.  The subsystems assigned to a
track use monitor data segments to communicate amongst
themselves and with M&C; monitor data is also used to populate
GUI displays on the M&C workstation.  Monitor data is
“published” by the subsystem, and may be “subscribed” to by any
interested party.

All of these messages are either ASCII text or are easily converted
to and from ASCII text; hence scripted control of a subsystem is a
natural thing to do.  The wrinkles are due to the asynchronous
nature of the interface, and to the multi-threaded nature of the
M&C API.
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1.4 The Uplink Consolidation Task
Our project began in late 1997 as the “Command Replacement
Task”.   The DSN command subsystem receives spacecraft
command data blocks from the spacecraft’s flight team, queues
them up, and ultimately modulates them onto a subcarrier signal.
Our job was to design and build a new command subsystem on
modern hardware; the new subsystem was to be called the
"Command Control Processor", or "CCP".  

Over the years a body of reusable subsystem software had
accumulated to support the building of subsystems, but as we
were starting the DSN was just beginning to move to a new
implementation of the M&C protocol described above.  The new
implementation was radically different from the old.  As part of
our job was to build the subsystem to the new standard, we were
able to start from scratch and build a new subsystem infrastructure
on top of the new M&C protocol.

After we’d released version 1.x of our new Command subsystem,
and while we were working on version 2.x, our scope was
expanded, and the task was renamed “Uplink Consolidation”.  In
version 3.x, our software was to provide a consolidated monitor
and control interface for the DSN Command, Exciter/Transmitter,
and Ranging functions under the name of the "Uplink
Subsystem", or "UPL".  The Ranging function is used to measure
the round-trip light time to the spacecraft, and works by
generating a sequence of ranging tones which are turned around
by the spacecraft and detected by the downlink ranging hardware.
The Exciter/Transmitter function produces a carrier signal,
modulates the Ranging and Command signals on to it, and steps it
up to the required output power before passing it along to the
antenna.

At the time of writing, we have finished the implementation phase
for the first consolidated version, 3.x, and are preparing it for
acceptance testing.  

1.5 DSN Testing
Delivering a subsystem to the DSN involves four levels of testing:

� Unit testing by the individual developers
� Integration testing by the subsystem's test team
� Acceptance testing by DSN complex personnel, with help

from the subsystem's test team
� Operational "soak" testing.  This is a probationary period in

which the subsystem is used for real operations, but is under
close scrutiny.

Ideally, any automated test solution would apply broadly,
allowing automation of both developer unit tests and the official
test plans used for acceptance testing.

My responsibility on the Command Replacement/Uplink
Consolidation task was the interface with the Monitor & Control
subsystem, i.e., the code which received and responded to CCN's
and operator directives, and which sent event notices and
published monitor data.  I soon realized that a suite of automated
regression tests could save a great deal of time.

Because we were developing a new subsystem infrastructure as
part of our overall effort, we produced a lot of library code,

mostly written in C.  Writing test programs for these libraries was
generally quite straightforward.  The difficulty lay in automating
the testing of the subsystem software as a whole.

2. EXTERNAL TESTING
2.1 The Monitor & Control Shell
Prior to this task, I was part of the M&C subsystem team,
responsible for developing GUI infrastructure.  This involved
using tempermental early versions of the new M&C protocol and
API.  To add in troubleshooting, debugging, and testing I wanted
to create an interactive shell which gave access to the M&C API.
The extensible scripting languages then available to me were Perl,
Tcl, and Python.  Perl I rejected out of hand as it doesn't provide
an interactive shell.  At that time (1995) Tcl was more widely
known than Python, and Tcl's command syntax provided a more
pleasing shell interface, so I selected Tcl, and created an
application called monsh, the Monitor and Control Shell.  When I
left the M&C team to work on the Command Replacement task, I
took monsh with me. 

A digression: because of its interactive nature, monsh has
remained my preferred tool for troubleshooting M&C
communications problems; the effort spent developing and
maintaining it has been worthwhile for this reason alone.

2.2 Monsh Implementation
For the most part, monsh is a straight-forward Tcl extension
which wraps the calls in the M&C API and adapts them to Tcl
style.   The only interesting implementation detail is monsh's
handling of the M&C API's callback functions.

Rather than using an event loop, the M&C API is multi-threaded,
using POSIX threads.  The client registers callback functions with
the API; when incoming messages arrive, the appropriate callback
is called in its own thread.  Consequently, it was necessary to
multiplex these messages into the Tcl event loop for processing,
as follows: when each message arrives, its data is copied into a
new dynamically-allocated packet, and a pointer to the packet is
written to a Unix pipe.  The other end of the pipe is registered
with a Tcl input file handler which reads the packet from the pipe,
unpacks the data, and calls the user’s Tcl callback code.  This is
all done in C.

Monsh can run as a GUI (tkmonsh), in which case the event loop
is always available; in a typical test scenario it is more usual for a
monsh script to send operator directives to the subsystem and
enter the event loop just long enough to receive the response.
Monsh provides the commands mon_event_loop and
mon_end_loop to enter and exit the event loop as needed. 

2.3 Naïve Test Scripting: The CcpTest Package
My first effort at scripted testing for Uplink was in support of my
work on version 1.x of the subsystem, the "Command Control
Processor", or CCP.

The initial goal was to support exhaustive testing of the subsystem
software, i.e., all nominal scenarios plus all failure scenarios
resulting in 100% code coverage.  Consequently, test scripts
needed to be able to do the following things:



� Configure the subsystem’s initialization files and local
directory space before invoking the subsystem.

� Invoke the subsystem software as needed.
� Simulate the M&C Subsystem, including the sending of

Configuration Change Notices (CCNs).
� Send operator directives and verify the category and text of

the responses.
� Verify event notices and monitor data values.
� Scan and verify entries in the subsystem’s debugging log.
� Simulate communication with other subsystems, as needed,

notably M&C and Exciter/Transmitter.
� Terminate the subsystem software as needed.

In my initial implementation, the test software consisted of two
layers on top of monsh.  The first was a package called MonTest
which implemented a generic M&C test harness based on taking
action and then waiting in the event loop for a response.  Given a
list of monitor data item names and values, for example, the
monVerify command verified that each item’s published value was
as specified, retrying periodically, if necessary, until the values
were correct or a set timeout expired.  Similarly, the command
sendDir sent an operator directive to the  program being tested;
expectResp waited for the response, which had to match a
specified pattern.  Scripts written using MonTest don't provide a
GUI; instead, individual MonTest commands enter and leave the
event loop as necessary.  MonTest is still used today to test some
of our low-level library code.

The second layer was an ad hoc collection of code specific to our
subsystem; it simulated the M&C and Exciter/Transmitter
subsystems, configured the CCP's initialization files, invoked the
subsystem before each test and terminated it afterwards, and in
general provided a convenience layer on top of MonTest.  This
package was called CcpTest.

We'd discovered that it could be dangerous for multi-threaded
programs to fork-and-exec other tasks (under POSIX Threads, at
any rate).  However, it was much safer if any forking was done
prior to creating any new threads, and so CcpTest used a two-level
approach, as follows:

� Each CcpTest script ran as a separate invocation of the
monsh interpreter.

� First, the script set up the subsystem's environment as
desired.

� Next, it invoked the subsystem software.
� Next, it wrote the body of the test to a temporary file, and

invoked monsh to execute it.
� The child script performed a series of tests, logging all

activity and results to standard output.
� When the child script terminated, the parent script captured

the output and scanned it for failures.
� The parent script then wrote the complete log and the results

to standard output.

I wrote several dozen detailed test scripts using this approach.
Over time, a number of disadvantages became evident. Because
the test scripts controlled the subsystem environment, they were
remarkably fragile.  These were early days, and the contents of the
subsystem initialization files were updated regularly, as were
many other things.  Consequently, the test scripts were frequently

broken by changes having nothing to do with what they were
testing, and required frequent updating.  Human nature being what
it is, this meant that they didn't get run very often.  

Next, each test script contained ten to fifteen lines  of boilerplate
code that were almost (though not quite) the same for each script--
ten to fifteen lines were both necessary and obscure.

Those developers I tried to interest in using CcpTest for their own
unit testing were put off by the steep learning curve.  None of
them were Tcl programmers, nor did most of them need to test the
ins and outs of subsystem invocation and failure as I did.  Our
lead tester was interested, but writing scripts was sufficiently
difficult and his time sufficiently constrained that nothing
happened.

2.4 Better Test Scripting: The ccp_test Tool
About halfway through the development of version 1.x I tried a
slightly different approach in an attempt to resolve some of these
problems.  The result was both easier to use and less flexible;
where CcpTest was capable of invoking and testing any desired
program, the new approach was focussed on testing the CCP
subsystem software only.

First, the collection of ad hoc code loosely named CcpTest was
extensively revised, refactored, and redesigned for clarity and
consistency.  Second, a tool called ccp_test was written to
encapsulate all of the ugly details of getting a test script up and
running.  The input to ccp_test was a Tcl file that defined a series
of independent test cases.  Ccp_test was responsible for invoking
the subsystem software as needed, and for executing each test
case, in sequence or in random order, once or repeatedly.  It was a
great improvement, doing away with most of the ugly boilerplate
and easing the learning curve somewhat.  It didn't solve the most
serious problem, the fragility of test scripts.  Nevertheless,
ccp_test was used by our lead tester to do operator directive
syntax checking as part of normal integration testing.  It was never
used for acceptance testing.

As before the result of the fragility of the test scripts was that I
didn’t run them all that often so that I wouldn’t have to update
them all that often.  Moreover, I never completely finished porting
my old scripts over to the new framework.

2.5 Subsystem Evolution
When version 1.x of the subsystem software was complete, we
began development of version 2.x.  It was at about this time that
we were tasked to do Uplink Consolidation in our version 3.x, and
as most of the 2.x changes didn’t involve me I spent most of my
time working on new infrastructure to support our vastly
expanded set of requirements for 3.x.  Some of this infrastructure
went into the 2.x version to make it more robust and to save time
later on, and the related architectural changes broke ccp_test’s
handling of subsystem invocation and termination.  The code
tested by my existing test scripts remained largely unchanged,
however, and being busy with other things I allowed ccp_test to
remain broken until late in the development cycle.  

Then version 3.x development began in earnest, and the
architectural changes broke ccp_test again.  One simulated
subsystem no longer needed to be simulated; and as the subsystem



became much larger and more complex, the fragility problem
became correspondingly more difficult.  I made several abortive
efforts to update ccp_test for version 3.x, but motivation was
lacking.  While ccp_test added value, it was unwieldy and much
of that value was eaten up by the constant rework.

And then the death knell rang. Ccp_test used an M&C subsystem
simulation to test the subsystem’s reaction to configuration
change notices.  At about this time, a policy change came down
that indirectly (but effectively) banned the use of such simulators
on the main LAN at a DSN complex.  As designed, ccp_test could
never be used for acceptance testing.

3. INTERNAL TESTING
I’ve referred to my previous efforts at scripted testing of our
subsystem software as “external testing” because the test software
was completely independent of the subsystem software itself.  For
several reasons, I decided to try a completely different approach:

First, control of the subsystem initialization files can be useful for
unit testing, but isn’t required for integration or acceptance
testing: the initialization files and environment must be set
correctly at subsystem installation and shouldn’t be changed
thereafter.

Second, control of subsystem invocation and termination is useful
for testing certain specific failure modes, but isn’t required for the
vast bulk of conceivable test cases.

Lastly, a scripting mechanism that could assume that the
subsystem software was successfully configured and invoked
would be freed from the fragility problem.  Environmental
changes required by software changes would have to be resolved
before the scripting mechanism was even available, thus removing
this concern from the individual scripts.

An internal scripting facility would run as part of the subsystem
software.  Consequently, it would not be able to control subsystem
initialization or invocation…but at the same time it would be
always available whenever the subsystem software was running,
and would be controlled using the same interface as the rest of the
subsystem software.  The moral was clear—by relaxing my two
most stringent requirements, I should see an increase in usability
and stability.

3.1 The Legacy AutoTester
The infrastructure used with the previous version of the M&C API
had included a scripting facility, the "AutoTester", with which
scripts residing on the subsystem's disk drive could be invoked
and controlled somewhat interactively via operator directives.  In
at least one case, the AutoTester had been used to automate the
bulk of a subsystem acceptance test.  This was a model worth
examining.

It soon became clear that simply porting the AutoTester to our
platform was out of the question.  It was closely tied with the
obsolete subsystem infrastructure, and made a number of
assumptions (such as the use of shared memory for storing
monitor data items) that were invalid for our architecture; many of
these assumptions were evident in the scripting language itself.
Moreover, its scripting language was the typical result of trying to

write an ad hoc extension language that’s as easy as possible to
parse and execute line-by-line, with ugly control structures bolted
on afterwards.  Now that many worthwhile extension languages
are available, it looked especially bad.

However, the AutoTester's command set and operator directive
interface had proven themselves useful for subsystem testing and
automation, and were clearly worth emulating in a better
language.

At this point in our development, our project was using two
scripting languages: Perl and Tcl.  Of the two, only Tcl was
designed from the ground up for embeddability; moreover, thanks
to monsh, we had experience with Tcl’s C API.  So it was an easy
decision to base the new facility on Tcl.

3.2 Uplink Software Architecture
The Consolidated Uplink Subsystem consists of a Solaris
workstation called the Uplink Processor Assembly (UPA) and a
number of hardware boxes.  In this paper, the term “Uplink
Software” refers only to the software that runs on the UPA.

The Uplink Software is a distributed application consisting of a
number of application programs, or “tasks” built on top of our
new subsystem infrastructure, the Uplink Common Software.
Generally speaking, each task is responsible either for managing
one external interface, or for coordinating the work of other tasks.
The tasks communicate among themselves by means of messages
sent across Unix-domain sockets.  Internally, the execution of
each task is controlled by a select()-based event loop similar to
Tcl’s own.

3.3 The Uplink Scripting Engine
The internal scripting facility could be built into an existing task,
or implemented as a new task.  We chose to write a new task, the
Uplink Scripting Engine, for these reasons:

Code Independence:  Because the Scripting Engine was to be used
to test the Uplink subsystem's software, it should, so far as was
possible,  rely only on independently-tested infrastructure code
and not on subsystem application code.

Realistic Testing:  The main function of the Scripting Engine is to
exercise the Uplink Software by means of M&C messages,
especially operator directives and responses.  For end-to-end
testing, these messages should come from outside the task that
handles them, and should be handled identically to messages
coming from outside the subsystem.

Failure Recovery:  Because the Scripting Engine is primarily a
test tool, fatal errors in the Scripting Engine should not be allowed
to affect the operation of the remainder of the Uplink Software.
Being a separate task, the Scripting Engine can be brought up and
down without hazard.

4. ENGINE IMPLEMENTATION
The following sections will discuss the features and
implementation of the Uplink Scripting Engine.



4.1 Operator Control
Scripting is controlled by the ACTL operator directive.  The
acronym “ACTL” stands for something like “Automation
ConTrolL”; it was chosen for consistency with the legacy
AutoTester.

ACTL <scriptname> [<arg> [<arg>…]]
Invokes the named script.  The script is found by searching
for a file called “<scriptname>.tcl” along a list of script
directories.  When the script is invoked, the variable argv
will contain a list of the arguments (if any).

The operator may invoke only one script at a time; the script
must terminate before the operator may invoke any
subsequent script.

The Scripting Engine sends event notices to M&C at script
invocation and termination; the name of the current script is
published as a monitor data item for display.

ACTL RESM [<arg> [<arg>…]]
A script can request operator action by sending an event
notice to M&C and suspending its execution.  After taking
the action, the operator uses ACTL RESM to cause the
script to resume execution.  When execution continues, the
variable rargv will contain a list of the arguments to ACTL
RESM, if any.

ACTL END
Terminates execution of the current script whenever it next
suspends (e.g., to wait for a directive response).

ACTL RESET
Resets scripting by killing the Uplink Scripting Engine task,
which will be restarted automatically.  This is a drastic step,
but protects against scripts that never suspend, like this one:

while {1} { }

4.2 The Scripting Language
The Uplink Scripting Language is based on the standard Tcl 8.0.3
interpreter.  Some of its commands are implemented in C and
loaded into Tcl interpreters as needed; others are defined in a Tcl
package called UlcSe which is package require'd by each created
interpreter

The implementation of the Uplink Scripting language depends
heavily on careful control of access to the event loop.
Consequently, the after and vwait commands are disabled.

The following commands are modified from their normal Tcl
definition:

exit
Normally exit terminates the program, which in this case
would be the Uplink Scripting Engine itself.  In this
application, exit terminates execution of the current script,
returning control to the caller, which may be the Scripting
Engine or a parent script.  This was define by redefining exit
as follows:

proc exit {dummy} {
return –code error

}

The script invocation code catches the error, sees that there is
no error message, and presumes that it’s a normal
termination.  Execution then continues in the parent.

bgerror
This command is redefined in the usual way to output
background errors to the Scripting Engine’s log.

The following is an incomplete list of the Uplink-specific
commands.

susp ?<message>?
Suspends script execution, sending the <message> to the
M&C operator as an event notice.  If <message> is not
given, a standard message is used.  The message will usually
tell the operator to take some action, followed by sending the
ACTL RESM directive.  The script can request operator
input by telling the operator to send ACTL RESM with
particular arguments.

call <script name> ?<arg>…?
The call command is designed to allow test scripts to call
each other safely, with minimal worry about interference
through shared variable names.  The command searches for
the named script just as the ACTL directive does, and
invokes it in a new slave interpreter (see 4.3, Managing
Script Execution).  The current script is suspended while the
called script runs to completion; then execution of the current
script is resumed.  If the called script throws an error or a
fatal test failure, then all script execution is terminated and
control returns to the Scripting Engine itself.

As with the ACTL operator directive, argv contains a list of
the remaining arguments, if any.

include <script name>
Searches for the named script just as the call command does,
and sources it into the current interpreter.  This is the normal
way for authors of test scripts to load any libraries of test
code they might have written.  Packages in the
TCL_LIB_PATH can also be require'd, but few test script
authors are Tcl programmers, and using packages would
require them to learn an additional mechanism.   

wait <seconds>
Pauses script execution for the specified number of seconds.
The argument may include a decimal fraction, so it's possible
to wait for a fraction of a second.

fail <message>
Signals a test failure.  A script may choose whether or not
failures should terminate execution; either way a failure
message is logged and sent to M&C.  If failures are fatal,
then fail is equivalent to error.  Failures are fatal by default.

od <directive text>
Sends an operator directive to the subsystem, and waits for it
to be accepted.  The test fails if the directive is rejected.



odrej <directive text>
Sends an operator directive to the subsystem, and waits for it
to be rejected.  The test fails if the directive is accepted
instead.

dr <response pattern>
<response pattern> is a string match pattern.  This
command attempts to match the last received directive
response text against the pattern.  The test fails if it doesn’t
match.  

This command is always used together with od or odrej, as
follows:

od "MOD CMD E" ;# Enable modulation
dr "*enabled*" ;# Test the response

mon <item name>
The Scripting Engine receives a complete copy of all monitor
data items published by the Uplink Subsystem; a script can
access the value of any item by passing its name to this
command:

set status [mon Status]

verify <condition> ?wait <seconds>?
This is a generic testing command, usually used in
conjunction with the mon command.  By default, it simply
verifies that <condition> (a Tcl expression) is true, calling
fail if it is not.  If the wait <seconds> clause is added, then it
will wait for up to the specified number of seconds for the
<condition> to become true.  For example,

# Verify that the subsystem is not
# configured for service.
verify {"Waiting" == [mon Activity]}

# Configure the subsystem for service
# with spacecraft 99
od "CNF SCN=99"

# Wait until the subsystem has been
# configured. Fail if it hasn't
# successfully configured within 30
# seconds
verify {"In Service"==[mon Activity]} \

wait 30

event <event list> ?wait <seconds>? ?with <commands>?
Each event notice has a unique integer ID.  This command
waits until an event notice is received that has an ID in the
<event list>.  By default it waits indefinitely; if the wait
<seconds> clause is include, it waits for up to the specified
number of seconds, and fails if a matching event notice hasn't
yet been received.  For example,

event {2001 2002} wait 30

Sometimes the relationship between an event notice and the
actual event that triggers it is problematic.  Consider the
following case:

# OD sends event 100, then responds
od "CNF"

# Always fails
event 100 wait 30

The event call always fails because the event notice is
received before the od call returns.  The with <commands>
clause handles this case:

event 100 wait 30 with {
    od "CNF"

    verify {
        "In Service" == [mon Activity]
    } wait 30
}

In this case, event executes its body, which may contain any
desired commands (including nested event calls), and will
end successfully if a matching event is received at any time
from the start of executing <commands> up to 30 seconds
after it's done executing <commands>.

The Uplink Scripting Engine understands many other commands,
including commands to send event notices, write to the log,
unpack argv and rargv in convenient ways, and so forth, but these
are the commands with interesting implementation details.

4.3 Managing Script Execution
Tests scripts will be written at different times, by different people,
all of them making different assumptions and few of them
(initially, anyway) familiar with Tcl.  If all test scripts were run in
a single interpreter, it would be easy for one script to leave
garbage behind in Tcl's memory that could distort the execution of
a subsequent script.  Therefore, each script must be run in its own
slave interpreter.  The corollary is that scripts cannot share data
with each other through Tcl variables, but this turns out not to be a
problem.  For this application, the essential data is the state of the
Uplink subsystem itself.  Scripts can examine the subsystem
directly, by querying monitor data or sending query directives.
Moreover, the effects of running a script should be apparent as
changes in the subsystem's state. (This is called positive closed-
loop control, and it's a requirement placed on all DSN
subsystems.)  Thus, there is little need for two scripts to share data
in any other way, except by the limited means of passing
arguments from a calling script to a called script.    

If a script needs procedure definitions defined in another file, it
can include that file; but the included definitions will be valid
only in that script.

The Scripting Engine creates and initializes a master Tcl
interpreter at start-up.  It is used only for creating slave
interpreters to execute scripts invoked via the ACTL operator
directive.  Similarly, when a script uses the call command, a slave
interpreter is created to execute the new script.  In both cases, the
following Tcl code does the work:



proc ::UlcSe::SlaveSource {
    script arglist filename
} {

    # FIRST, Create the slave and load
    # it with the Scripting Language
    set slave [interp create]
    PushSlave $slave

    # NEXT, pass the args to the interp
    $slave eval [list set argv $arglist]

    # NEXT, invoke the script.
    set msg ""

    try {
        $slave eval source $filename
    } catch msg {
        # Do nothing
    }

    # NEXT, Restore the old one.
    PopSlave
    interp delete $slave

    # NEXT, report errors or return normally
    if {"" != $msg} {
        if {[string match "in *:*" $msg]} {
            error $msg
        } else {
            error "in $script: $msg"
        }
    }

    return
}

The arguments to SlaveSource are the script's name, i.e., its file
name less the path and extension, the list of arguments, if any, and
the full file name of the script.  Technically speaking, the first
argument is unneeded as it can be computed from the file name,
but SlaveSource needs both and as the caller always has both they
are both passed.

First, a new slave interpreter is created.  We don't use a "safe"
interpreter as operationally there is no way to give an untrusted
script to the Scripting Engine, and it is often useful for scripts to
interact with the environment.

Next, the new slave is pushed onto the slave stack by PushSlave.
This does two things.  First, it identifies the slave as the current
interpreter, which is necessary for the handling of several of the
Scripting Engine's ACTL operator directives, and second it loads
the Uplink Scripting Language definitions into the interpreter.  At
present the slave stack is an explicit stack with a maximum depth
of 50.  This limitation could be removed by relying on the implicit
stack of slave interpreters created by recursive calls to
SlaveSource.

Next, the argument list is placed in the Tcl variable argv.

Next, the script is source'd into the new slave.  The try…catch
construct is a simple wrapper around the standard Tcl catch

command; if an error is thrown, then (in this case) the variable
msg is set to the error message.
 
Next, if any real errors were reported, the variable msg will be
non-empty (recall that the exit command has been redefined to
throw an error with the empty string as its message).  Any such
errors are reported.  

4.4 Managing Asynchronous Waits
The Uplink Scripting Engine is an event-driven application based
on Tcl's event loop.  Asynchronous waits are handled by entering
Tcl's event loop recursively and staying there until the desired
event occurs.  All of this is done in C code.  I'll present two
representative examples.

On a susp command, the Scripting Engine pauses script execution
until an ACTL RESM operator directive is received.  The susp
command is implemented in C; here is the relevant code:

SeGoal result = waitFor(SeRESUME);

if (result == SeEND)
{
    return endScript(interp);
}

return TCL_OK;

The waitFor() function is defined as follows:  

static SeGoal 
waitFor(SeGoal goal)
{
    script.waitingFor = goal;
    script.gotEvent = SeNOTHING;

    while (script.gotEvent != SeEND &&
           script.gotEvent != goal)
    {
        Tcl_DoOneEvent(TCL_ALL_EVENTS);
    }
    script.waitingFor = SeNOTHING;

    return script.gotEvent;
}

It processes events repeatedly until some event sets
script.gotEvent either to the goal event or to SeEND.  The latter
code indicates that the ACTL END operator directive has been
received, terminating all script execution.

Thus, we can see that the susp command waits until the operator
sends ACTL RESM, which sets script.gotEvent to SeRESUME,
or ACTL END, which sets script.gotEvent to SeEND.  In the
latter case, the endScript() function simply sets the command's
result string to "Script execution terminated by operator." and
returns TCL_ERROR.

This pattern is repeated for each of the commands that pause
script execution.  The od command, for example, sends a directive
and waits for a response.  When the response is received—and
there is a timeout mechanism inherent in the M&C protocol, so a



response is always received—the callback will cache the response
data and set script.gotEvent to SeRESPONSE.  Since only one
directive can be sent at a time, this indicates that the desired
response has been received.  The relevant code is as follows:

result = waitFor(SeRESPONSE);

if (result == SeEND)
{
    return endScript(interp);
}

if (script.lastResp.cat != RESP_COMPLETED && 

    script.lastResp.cat != RESP_STARTED)
{
    return logIgnorableFailure(interp, 
        "Expected COMPLETED or STARTED");
}

return TCL_OK;

The code is essentially identical to that in the susp command,
except that od goes on to test the response.  The
logIgnorableFailure() function logs test failures, and returns
TCL_OK or TCL_ERROR depending on whether test failures are
currently fatal or not.  

The odrej, wait, and event commands are implemented in the
same way.  event is somewhat more complicated because it can
call itself recursively; therefore, it needs to push a record on a
stack for each call.
 
5. USAGE IN PRACTICE
For our first delivery, ccp_test was used for both unit and
integration testing.  In our current delivery, our new internal
Scripting Engine has been used extensively for unit testing, and is
beginning to be used for integration testing; moreover, portions of
the acceptance test plan are currently being written as Scripting
Engine scripts.  However, these latter scripts are not yet at a point
where analysis is worthwhile. The following table shows some
statistics.

V1.x:
External

V3.x:
Internal

Unit Test Raw lines of
code

909 8711

Stripped lines
of code

389 4904

Tests 170 5307
Density
(tests/line)

0.44 1.08

Integration Raw lines of
code

5889 n/a

Stripped lines
of code

2577 n/a

Tests 1538 n/a
Density
(tests/line)

0.60 n/a

Table 1: Test Density, External vs. Internal Testing

In every case, the code counts are for actual test cases; the test
harness code is excluded, except for boilerplate that appears in the
test case files.  "Raw lines of code" is simply the number of lines
of text in each test case file.  "Stripped lines of code" is the
number of lines after comment lines and blank lines are deleted. 

"Tests" is a rough count of the number of conditions tested in each
file after boilerplate and test set-up code was deleted.  I counted
one for each verified event notice, verified monitor data value,
verified directive response category (i.e., success or failure), and
verified directive response string, and matched line of debugging
log.

"Density" is simply the ratio of "Tests" per "Stripped line of
code." I arrived at this as a rough measure of how easy it is to
write a test case using each framework.

The low code density for unit tests using the External Harness is
because many of the unit tests were written for the test harness
that preceded ccp_test.  The 60% value found in the integration
tests should be more representative for ccp_test-style test cases.

Only one developer (myself) used ccp_test for unit testing; by
comparison, two developers used the Scripting Engine for unit
testing, and we wrote over 30 times as many tests.  This increase
has two causes.  First, the version 3.x system is much larger, and
there are more things to test.  Second, Scripting Engine scripts
have proven to be much less fragile than their ccp_test
counterparts, and are also easier to write; hence, there's a greater
motivation to write them.

However, many of the tests counted in the ccp_test column
involved detailed inspection of the subsystem debugging log; as
this contributed to fragility, relatively few of the Scripting Engine
tests are of this kind.  If this kind of testing were added to the
existing scripts, the total number of Scripting Engine tests would
be much higher

The shortest useful Scripting Engine test script is one line of code,
performing one test.  The shortest useful ccp_test script is ~7 lines
of code, performing one test.

6. CONCLUSIONS
Regarding internal vs. external testing, the lesson is that simplicity
pays.  

Our external test harness, ccp_test, was capable of testing the
entire system including invocation, normal operations, and failure
recovery after unexpected task halts.  However, it was difficult to
get started with, required lots of boilerplate code in each test case,
and was extremely fragile because the successful execution of
each test depended on many factors external to the feature being
tested.

Our internal test harness, the Uplink Scripting Engine, is less
ambitious than ccp_test but is also considerably simpler to use.  It
assumes that the software is installed correctly and has already
been invoked, thus eliminating a major source of test fragility.  It
is available at all times, to every developer and tester, and is
monitored and controlled using the same interface as the
subsystem itself.  And although there are test cases it cannot
handle, it is nevertheless testing far more test cases than its



predecessor.  As an added bonus, it can be used during normal
subsytem operations to automate "operator work-arounds".

Regarding the use of Tcl as the scripting language, Tcl proved to
be a mature, solid tool.  I've frequently left my unit test suite
running repeatedly over night or over a weekend to flush out
obscure timing-related bugs; and in no case did I see any
problems related to Tcl or its libraries.  And even though the
script invocation and management model is unusual, Tcl's slave
interpreter mechanism supplied everything I needed.

Work on the Uplink Scripting Engine is nearly complete. The
only planned enhancement is to generalize it for use by other DSN 

subsystems currently in development.  Also, as more developers
and testers begin to use it, I expect that there will be convenience
enhancements to the Uplink Scripting Language.

7. ACKNOWLEDGEMENTS
The research described in this publication was carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.


	“Configuration Control Notices” are sent by M&C t
	od <directive text>

	V1.x: External
	
	Table 1: Test Density, External vs. Internal Testing



