
Tcl/Tk-based Alarm Presentation System
K.R. Fitch

Westinghouse Electric Company
1740 Golden Mile Hwy, Monroeville PA, 15146, USA
kfitch@notes.westinghouse.com

Abstract
This paper describes my experiences in implementing an alarm
presentation system (APS) for a nuclear power plant using
Tcl/Tk as the basis for the user interface. After defining just
what an alarm presentation system is, I describe the basic
architecture, and highlight how I use various features of Tcl/Tk
in the design. The ultimate goal is to give the reader the sense
of the power of Tcl/Tk for implementing complex applications
and to help the reader learn from my experiences and mistakes.

1 WHAT IS AN ALARM
PRESENTATION SYSTEM?
Nuclear power plants world-wide are upgrading their
instrumentation and control (I&C) systems from analog to
digital systems as part of plant life extension programs.
Westinghouse Electric Company is currently implementing a
major I&C and control room replacement project for the
Ringhals 2 plant in Sweden. One important element of existing
control rooms is the annunciator system, which typically
consists of many hundreds of hardwired, backlighted, engraved
alarm tiles arrayed in some number of alarm boxes. These tiles
flash to alert the operator when alarms change state and are
steadily lit when an active alarm is acknowledged.

An important human factors attribute of fixed tile layout
annunciator systems is that the operators quickly learn to
associate patterns of lit tiles with various common plant
conditions. They can often recognize at a glance what is going
on. The Ringhals 2 customer wanted Westinghouse to develop
a software-based alarm presentation system (APS) which
maintained the strengths of the fixed layout system while
supporting “click on the tile” access to live data, alarm response
procedures, and other reference data. The APS feature set was
specified in considerable detail in the contract documents.

The control system hardware and software being used for the
project is from the Ovation™ process control product line,
which is supplied by Westinghouse Process Control (an
Emerson company). The Ovation system is a distributed system
which consists of controllers (custom PCs) that interface with
plant I/O signals and of workstations (Sun Solaris and/or
Windows NT systems) that provide the operators with control
and monitoring displays. All of the controllers and workstations
are connected by a high-speed data highway which lets them
share data. An integrated alarm system is among the standard
features of Ovation, but this “base alarm system” can only
present the alarm data in a series of chronologically ordered
lists. The software also provides a graphics language for
generating graphic displays and animating them with live data.
However it is limited in the number of graphic objects available
on a single display and is not capable of supporting many of the
desired APS features. The choice was made to investigate how

far we could go in implementing APS using Tcl/Tk as the basis
for the presentation layer. I became involved at this point
because of my previous experience in developing several modest
Tcl/Tk applications.

APS is what the nuclear power world calls category C software.
(The categories are formally defined in reference [1].) Basically,
this means that it is not safety-critical software, and that even if
it breaks or fails there will be no threat to the public from
radiation release. It may seem a little strange to define as non-
safety critical an alarm system that tells the operator when
something abnormal is happening. But as a result of the Three
Mile Island accident in 1979, operators are now trained to deal
with any severe problem by following emergency response
procedures that focus only on the values and trends of a fairly
small set of critical indications. Whether or not the alarms work
really doesn’t matter in a safety context. Because APS is
category C software, there is no problem in using commercially
available software such as Solaris and open source software
such as Tcl/Tk.

Half of the APS described in this paper is scheduled to be
installed during a control room upgrade in mid 2004, with the
other half in the following year.

2 THE APS ARCHITECTURE

2.1 The Customer’s Vision
Long before the Ringhals 2 upgrade contract was awarded to
Westinghouse, the control room operators had been thinking
about how they wanted to interact with a new software-based
alarm presentation system. They knew what they had in the
existing plant, and they knew the kinds of information they
needed to have to respond to alarms. They also knew the
limitations of the previous generation of the Ovation list-based
base alarm system, and had researched the approaches that
others were using in their plants.

Because they had done their homework, the upgrade contract
specified what they wanted in considerable detail, right down to
the wording of the menus and the layout of an idealized large
screen display. There was a large gap between the system we
had in the standard product and the system they wanted, and the
challenge for Westinghouse was to see what we could do to
close the gap.

In hardware space, the key element of the specification was the
desire for a single large video display unit (VDU) to be
controlled by a single mouse/keyboard. This VDU had to fit in
a control room console and not obscure the view of the “back
panels”. It had to be seismically qualified to the extent that it
wouldn’t fly to pieces during a design basis earthquake. It had
to have a sufficiently large display area capable of depicting all

of the key alarms simultaneously in a tile-based format with a
character height of no less than 4 mm (This is the human
factors-based minimum size for readability from one meter
away). To maintain similarity with the alarm tiles in the existing
plant, each tile was to be capable of displaying four lines of
twenty characters each. There are on the order of several
hundred key alarms associated with each of the four major plant
subsystems (the reactor, the twin turbine-generators, and the
electrical system). In practice there is no single display unit
available that can handle the necessary number of pixels.

In software space, the key elements were as follows. First, the
system had to allow for a hierarchy of alarms, where less critical
alarms could be logically combined to form a single high level
alarm that depicts the most severe underlying alarm state.
Information overload is a significant human factors problem in
plant upset conditions that can cause hundreds of alarms to
occur in quick succession, and this hierarchy is a technique for
dealing with this problem. When the high-level alarm comes in
as an isolated event, the operator can immediately click on the
alarm tile to bring up a display of the alarms that comprise the
high level alarm. In the immediate aftermath of a major plant
upset where many of the inputs to the high level alarm may go
into alarm, the less critical alarms won’t place undue demands
on the operator’s attention.

Second, the operator needed to be able to have immediate online
access to the procedures and technical information he needs to
deal with each alarm. The existing binders of paper procedures
were to be replaced with HTML procedures, complete with links
to auxiliary information (e.g. technical manuals for pumps). The
kinds of technical information needed include summaries of the
alarm limit set points, trend plots of the process signals that are
the inputs to the alarm, and access to the database containing all
of the information about the point. In addition, they wanted the
software equivalent of a Post-It™ note so that they could leave
information about the alarm for the next shift of operators or the
maintenance staff.

2.2 Hardware Architecture
The overall I&C system being developed by Westinghouse for
the Ringhals 2 plant uses the Ovation family of hardware and
software. In this implementation, the Ovation system uses Sun
workstations running Solaris to provide the operator interface.
There are four instances of APS in the Ringhals 2 control room,
one for the reactor area, one for the electrical area, and one each
for the twin turbine-generators. APS runs as an application on
four of these Solaris workstations, with each instance showing a
different set of alarms. Because a single VDU is not sufficient to
present all the information at once, we use a system called EOS
(made by BARCO - see reference [2]) to create a single logical
large screen X Windows server out of six physical 1280x1024
VDUs. These VDUs are arranged in a three columns, two rows
shape (see Figure 1 below). The APS application then remotely
displays its Tk toplevels on its associated EOS X Server. The
EOS X Server allows the mouse cursor to move freely over the
entire logical screen. A single keyboard is also available, but it
is used only on a limited basis for text entry. Figure 10 (at the
end of this paper) shows the APS as it would look on a seamless
3840x2048 display.

Figure 1 – A Close-Up View of APS

Figure 1 is an example of one instance of APS as shown in a
control room mockup. There will be four such APS stations in
the control room. Note that the angled arrangement is driven by
the need for the operator to be able to see over the top to the
“standup” panels.

Figure 2 - A Wide Angle View of the Control Room

In the mockup photo in figure 2, the reactor area APS instance is
in the right center of the picture. One or more operators will use
the APS while seated or standing. Different alarm sounds for
each plant area and a flashing light at each APS station are used
to quickly orient the operators (who may be away from the
console) when an alarm occurs.

2.3 Software Architecture
In terms of software, APS makes use the base Tcl/Tk code
(version 8.3.3) as well as tclX (8.3), tclhttpd (3.2.1), itcl (3.2),
and tcllib (0.8) all running on Solaris 2.6 and compiled using
the Sun C compiler. The only non-standard configuration
parameter in the configure/make process is the use of the
SECURITY_FLAGS=-DTK_NO_SECURITY option. We do
this to avoid the constraint that “xauth” security be used to
enable the Tk send command. The xauth security model is not
consistent with the xhost-based scheme that is pervasive in the
Ovation system. Note that the plant network is carefully
isolated from uncontrolled systems on the plant network or the
Internet.

The APS application is single-threaded and uses the Tcl event
loop as the master scheduling method. It uses a variety of
customized Tcl extensions to interface with the Ovation system.
Included with the Ovation system are a number of application
programming interfaces (APIs) that allow programmatic access
to plant data as well as control of various Ovation displays and
features (e.g. trend displays, database lookups). Tcl interfaces to
all of the potentially interesting ones were developed, whether
or not they were initially used by APS or not.

APS runs at a nominal frequency of 2 Hz. This rate is driven
primarily by the need to flash alarm tiles with a one-half second
on/one-half second off pattern. The input signals to the alarm
tiles are typically scanned by the Ovation system at a 1 Hz rate.
Because the amount of time needed to process the alarms will
vary from cycle to cycle, we read the system clock when we start
processing, read it again when we’re done, and then wait using
the after command for a period of time based on the difference.
A transient condition where the compute time is more than the
allotted one half second is not reported as an error, while
sustained use of more than the allotted time is.

The fundamental unit of the APS is the alarm tile. All of the
configuration data for each tile is accessed by using the alarm
tile ID as the key to a set of Tcl arrays. Thus there is a row
array, a col array, a tile_text array, and so on. Each non-blank
alarm tile has a “alarmtile” widget (an adaptation of the standard
button widget) and (depending upon the type of tile) a menu
widget associated with it.

Alarm boxes and alarm lists are composed out of a rectangular
array of alarm tiles. Each alarm box/list is associated with a
separate Tk toplevel to allow the boxes/lists to be positioned on
the display(s), iconified, and withdrawn independently. The Tcl
grid geometry manager is used to arrange the tiles within the
boxes, while the ability to embed widgets in a text widget is
used for lists.

APS is a hybrid of Tcl code and C language extensions. Since
the Ovation API is written in C, we needed extensions to read
values and alarm state information. Beyond that, the question
arose of how much of the work to do on the Tcl side, and how
much to do on the C side. The partitioning of the work was
decided upon iteratively by trying a partitioning, measuring
where the bottlenecks were using the TclX profiling package,
and then replacing a frequently-used slow Tcl algorithm with a
faster C one. The major performance improvement steps were to
implement the alarm logic for each tile in C, to implement the
loop over the entire set of tiles in C, and to pre-sort lists
wherever possible.

The primary remaining performance bottleneck in the APS is the
implementation used for flashing (blinking) of the alarm tiles.
The tiles are blinked by synthesizing one or more “widget
configure –bg blink_color” commands in a string and then using
TclEval() to process the command string. In other words the Tcl
code calls a C extension that internally runs Tcl code when
necessary. The bottleneck can be significant if there are a large
number of tiles blinking at the same time, and the CPU usage
can double or triple. Some thought was given to reaching down
into the internals of the widgets to directly manipulate their data
structures to change the colors. Ultimately this was rejected
both because it is a Bad Idea to stray beyond the bounds of the
published API for Tcl/Tk (or anything else), and because it
looked to be a significant amount of work. In any case, given

the fact that the project is being developed over the course of
several years, it was felt that it was a good bet that faster CPUs
would come to the rescue (if indeed we needed to be rescued)
once the final APS configurations were defined. As of now,
APS is capable of supporting at least two thousand alarm tiles
per instance, with one half of them blinking, while using about
one-half of the processing power of an Ultra-5 workstation with
an UltraSparc IIi 333 MHz CPU and 256MB of memory.

Figure 3 - A Typical APS Alarm Box

The typical alarm box shown in Figure 3 above gives you the
idea about what the operator sees on the VDUs. Each tile in the
grid either represents a single plant process point that can go
into an alarm state or an aggregate point composed of an
arbitrary set of plant process points. In the former case, the user
can left-double-click on the tile to acknowledge the alarm and
right-click on the tile to bring up a menu of supporting
information. If the tile represents an aggregate point, a right-
click brings up another alarm box or an alarm list that shows all
the inputs. Holding down the middle mouse button brings up an
enlarged view of the alarm tile.

The background color of the tile denotes the alarm state. A red
background is a high priority critical alarm, a yellow
background is a normal alarm, a green background is an alarm
that has just cleared, and a gray background is an alarm that is
off. A special magenta background is used to denote points that
are out of service for one reason or another. Flashing tiles cycle
between the gray off color and the alarm state color. We allow
for a different foreground text color to be associated with each
background color, and have made the color controls accessible
via a Tcl interface. Currently we use black foreground text
throughout APS. We’ve experimented with changing the text
color to white for the red background case to improve the
contrast, but the flashing between white-on-red and black-on-
gray is disconcerting for some users (including the author).

Points that are connected to analog signals (e.g. a pressure
transducer) can have up to ten different alarm conditions (four
high levels, four low levels, and two user-defined levels). If
desired, the particular level that is in alarm can be shown as
dynamic text in the alarm window.

Figure 4 - A Typical APS Alarm List

The alarm list format is typically used for alarm aggregations
that have too many inputs to be arrayed in an alarm box. In
effect, it is simply a one column alarm box with differently
shaped tiles. The scrollbar allows for navigating among a long
list. Alarm lists can be rearranged by the operator, and the
technique for doing so was a good example of the “brute force”
approach. The alarm list is created as a set of alarmtile widgets
(a modified Tk button widget – see below) embedded in a text
widget. To rearrange these in chronological, priority, and
alphabetical orders, the algorithm works through an ordered list
of widgets. For each widget we save the widget coloration,
destroy the widget, and then recreate the widget, inserting it at
the end of the text. This accomplishes the sort.

Figure 5 - The APS master control display

The master control display performs several roles. It allows the
user to select from a set of lists that show all the active alarms in
various categories. It allows the expert user who knows a
password to control the behavior of the APS. It has a master
acknowledge button that lets the user acknowledge every alarm
that is currently visible. And finally, it provides visual feedback
that the APS is running and indicates how much CPU power it
is consuming. Most of the time in the power plant there are no
alarms changing state, and so the APS looks static. How then is
the operator to determine at a glance whether or not the APS is
still running? To provide this feedback, we move the bar inside
the middle bar slowly from left to right. The color of the bar is
determined by the worst alarm state in the entire APS. The

width of the bar is made proportional to a smoothed value of the
CPU power being used by APS. In figure 5 above, APS is using
about 10% of the CPU power of the machine.

Figure 6 - A Set of APS Alarm Boxes

Figure 6 shows an arrangement of alarm boxes. Typically, each
box groups alarms from one plant system. Such arrangements
are permanently shown on four of the six VDUs, with the other
two reserved for transient information, menus, trend displays,
and the like.

Figure 7 - The APS Background Information display

The APS background information display shown in Figure 7
uses the itcl tabnotebook widget as its basis. The operator
brings up this display from the menu associated with each alarm
tile. The tabbed notebook proved to be a very nice approach for
making a lot of information available to the operator with a
minimum of mouse clicks.

Figure 8 - The “Shadow” display

The “shadow” display shown in Figure 8 was developed as an
experiment in allowing all of the fixed APS displays (four of the
six VDUs) from all four of the APS instances to be shadowed
(copied) on the control room shift supervisor’s console. Each
alarm tile is shown as a one character cell, with a non-blinking
coloration corresponding to the alarm state. Clicking on the
miniature tile provides all of the same functions as the full scale
one, without consuming a large amount of screen space. The
experiment worked in the technical sense, although I found it
difficult to control the scaling and sizing such that the miniature
boxes were positioned at positions corresponding to their full
scale equivalents. In the end, the customer decided that they did
not want to use the feature.

3 TCL/TK AS USED IN APS

3.1 The Catalytic Action of Tcl/Tk
Those readers who took a chemistry course somewhere along
the way may recall the concept of “activation energy”.
Basically, in order for two chemical reactants to form a product,
you have to add enough energy to push the reactants together
(forming an “activated complex”) long enough for them to react.
If the activation energy is high, the reaction either takes place
slowly or not at all. One way to lower the activation energy for
a reaction is to add a catalyst. The presence of a catalyst makes it
more likely that the reaction will proceed.

Tcl/Tk is a catalyst for encouraging experimentation with a GUI
system such as APS. It is very easy to alter the visual elements
(widgets, fonts, colors, menus, etc.) either by a quick edit of the
*.tcl source files or even by interactively changing parameters
while the program is running. The activation energy for just
trying something out is much lower than it is in a more
traditional edit/compile/make/execute environment.

Tcl/Tk (as well as the associated extensions such as incr Tcl) is
also a catalyst for developing a complex GUI in the first place.
It is a highly expressive language that allows you to tell the
computer to do quite a lot of work with very little code.

The initial prototype of APS was ready to show to the customer
in the space of two months, much of which was spent iteratively
working on eliminating performance bottlenecks by replacing
Tcl code with C code. At that point there was little in the way
of serious error checking, and features like internationalization
were missing. It quickly became clear that Tcl/Tk was capable
of handling the design load and desired features of APS.

3.2 Tcl/Tk In Large Applications
Many different complex applications have been developed using
Tcl/Tk, and no doubt there are larger, more complex
applications than APS. Regardless, I have been quite impressed
with how well Tcl can handle large applications with thousands
of widgets and a single 3840x2048 logical screen comprised of
six regular VDUs. I had some concerns about how well it
would scale up, but found that Tcl/Tk just works for large
applications. No fuss, no muss, no memory leaks over weeks of
runtime, no problems handing a giant screen. There are of
course minor quirks such as tk_dialog pop-ups that get centered
in mid logical screen (and therefore straddle two physical
VDUs), tearoff menus that get orphaned, and the occasional out
and out bug (see SourceForge bug ID 483832) but these were
easy to address or work around.

As it stands today, the APS is comprised of 17K lines of Tcl
code (including blank lines and comments). There are 154 Tcl
procedures defined. The configuration data that defines the
layout and inputs to the alarm tiles when written as Tcl code
(see below) varies based on how many tiles are configured, but
is typically about 25K lines of Tcl code (with very few blank
lines or comments, since this code is dynamically generated at
APS startup and is not meant for human eyes).

When the system is running in a typical configuration, it uses
390 MB of virtual address space. One side effect of having such
a large address space on a Solaris system is the requirement to
have a larger than normal swap area that can accommodate two
390 Mb processes on a transient basis whenever the exec
command is invoked.

3.3 Writing & Interpreting the program
at runtime with the source command
One of the key self-imposed requirements on the APS was the
necessity to defer as much as possible of the configuration
processing until the APS instance is started. In the Ovation
environment, software is maintained and distributed from a
software server. For configuration control reasons among
others, this software server typically does not even have a
compiler. All standard Ovation applications are data driven in
that they read configuration files as they start up. In the case of
APS, there are four different instances with different sets of
inputs and alarm tile arrangements, and it was simply
unacceptable to have to maintain four separate versions with
compiled-in configurations.

The “master” configuration information for APS resides in an
Oracle database which encompasses essentially all of the data
that configures the I&C system for the plant. Because of the
architecture of the Ovation system, the database information is
exported in the form of ASCII configuration files in formats
dictated by the application program. For APS, I developed a
simple file format designed to be easily parsed. This file
contained in a compact form all of the information needed to
arrange and group the alarm tiles on the “logical” display
screens, the mapping information to associate physical X
screens with the logical ones, and the unique identifier of the
individual points that were “wired” to the tiles.

The general startup sequence for the APS is:

- Invoke wish with the “main” Tcl script file

- Source in the basic Tcl files for error logging
features, etc.

- Source in the Tcl configuration parameter file that
defines the generic behavior of APS (operating modes,
directories where files & extensions reside, etc.)

- Load in the custom Tcl extensions

- Invoke Perl to read the alarm tile configuration
parameter data and write a set of Tcl statements that
correspond to the selected configuration. Typically a
single input line of alarm configuration data causes
eight or so lines of Tcl code to be written, and a full
specification of an APS instance will have 3-4K lines
of input.

- Source in the rest of the Tcl source code,
establishing interfaces as needed to Netscape, Acrobat
reader, and various Ovation applications.

- Source in a “last chance” Tcl file that potentially
allows the user to override previously-defined values
or procedures

- Use the Ovation pointname as a key to extract other
point-related information from the Ovation database

- Pass the necessary data to the alarm system
“compiler”, which populates C language data
structures that are used in the Tcl extension to greatly
enhance the performance of the system.

- Create the widgets, menus, pre-sorted lists, etc.,
needed to run the system

- Start checking for alarms…

The entire startup process takes about thirty seconds. Why add
an external invocation of Perl instead of staying with Tcl?
Simply because Perl is better at doing “text transformations”
than anything else I’ve used.

3.4 Developing Tcl Extensions
When I last used Tcl for an application in the early 1990s, I had
built up a fairly trivial extension to interface with a simulator
system, so I was familiar with the concepts. For APS, I needed
two extensions, one to a large subset of the many routines in the
Ovation API, and one to my own customized alarm processing
code, which was used to dramatically improve the performance
of the system. I looked at using the SWIG tool, but rejected it in
part because the available include files and function prototypes
for the Ovation API were something of a mess, and in part
because I was going to have to customize the documentation
format and error handling approaches anyway. It was simply
easier to develop a template, and copy/customize the template as
needed.

I believe that Tcl is one of the easiest languages to write and
manage extensions for. It is certainly easier than writing
extensions for Perl (at least for a beginning extension writer).
The “everything’s a string” concept as input, and the ability to
pass back as output single long space-delimited strings and
process them on the Tcl side either as lists or as array key-value
pairs is very powerful. The cumulative upwards error reporting
and the built in features of the function Tcl_GetIndexFromObj()
are very useful and make the programmer’s life simple.

3.5 Performance profiling with the TclX
package
The TclX package has a set of profiling tools that collect data
and generate reports based on that data. These tools were
invaluable in figuring out what Tcl procedures and algorithms
were using the most CPU cycles. I integrated the profiling
package by creating a menu item which would pop up a display
asking how many APS cycles I wanted to profile for. I went
through several major repartitionings as I moved code from the
Tcl side to the C side as the profiling highlighted hot spots. It is
well worth the modest effort it takes to integrate profiling with
your application.

3.6 Tcl Introspection
The introspection capabilities of Tcl provide a powerful method
for troubleshooting. One of the difficulties of responding to
user complaints about problems with a GUI system is figuring
out how to later reproduce the situation the user was in. A
technique used in APS is to provide the user with a menu entry
that allows him to save the complete Tcl context by working
through the entire set of global variables. By writing this out as
sourceable Tcl code, it is often possible to restore enough
context to reproduce the problem. In other Tcl/Tk programs
I’ve developed, I’ve added a “panic” button that the user could
push to automatically send me the complete crash dump plus
any comments he wanted to add via e-mail. This “all-in-one”
approach was not possible for APS because the configuration of
the workstations does not include e-mail capabilities or an
Internet connection.

3.7 Enhancing the Button widget
One of the requirements for APS was to simulate a technique
that the operators use in the existing control room whenever the
inputs to the alarm are being tested by the I&C maintenance
staff. They have a special little tool that allows them to
physically slide the alarm tile out of the control panel a
centimeter or so. Then they know at a glance when they can
simply ignore an alarm.

Pending the development of 3D holographic VDUs and a
version of Tcl/Tk that supports them, we tried out a number of
techniques for clearly indicating in two dimensions that an alarm
tile was in test mode. We tried font style changes, button relief
changes, contrasting border coloration, underlines and
strikeouts, reverse video (exchanging the background and
foreground colors), and text justification changes using the
built-in capabilities of the Tk button widget and the Tk font
command. While these changes were easy to try out
interactively, none proved very satisfactory.

At the same time, we were trying to figure out an aesthetically
pleasing way of letting the operator know that an alarm point
was out of service or otherwise potentially not truly representing
the state of the plant. In the Ovation process control system, the
operators have many capabilities for manually taking points off
scan, suppressing alarm limit checking, etc.. In addition, the
system itself does a number of automatic data integrity checks to
flag conditions such as sensor out of range and stale data from
the data highway.

The ability to add extension code to Tcl/Tk includes the ability
to add new widgets that can be used as if they were built in to
the core. So I looked at creating a custom alarmtile widget
starting from the existing button widget. The idea was to do as
little work as and make as few changes as possible, knowing that
the button widget was likely to evolve or at least have bug fixes
applied over time. Further, I wanted the APS to be able to run
with a standard button widget, even if the added features weren’t
supported.

My approach was to overload the “-underline” option to the
button command. Perusal of the button widget code showed
that if the index value was negative, no underlining would take
place, and no bad side effects would occur. So I created a new
widget starting with the tkButton.c/tkButton.h/tkUnixButton.c
code that interpreted negative values supplied with the –
underline option.

The visual effects that I added were a diagonal “slash”
superimposed on the button/alarmtile rectangle (to indicate a
computer-detected “alarm state not necessarily correct”
condition) and an ellipse superimposed on the button/alarmtile
rectangle (to indicate an alarm in test mode). Both visual effects
were drawn using a stipple pattern and two colors (black and
white) such that they always had at least reasonable contrast
with the background color of the alarm tiles (which can be red,
yellow, green, magenta, or gray depending on the alarm state).
If you look closely at the center column of tiles in Figure 3
above, you can see what the diagonal slash and ellipse look like.

3.8 Internationalization with the msgcat
package
The APS was developed for a Swedish customer, and because of
this it was required to internationalize the menus and displays
that the operator normally sees and uses (diagnostic error
messages were not required to be in anything but English). The
msgcat package made this very easy. I simply adopted the idiom
of using

button .info.buttons.done -text [language "Dismiss"] …

where language is defined as

proc language {text} {
return [msgcat::mc $text]

}

To generate (and regenerate) the msgcat input files, I wrote a
Perl script that found all the instances of the [language “XXX”]
construct in the Tcl code and then wrote a msgcat format file
containing lines of the form

msgcat::mcset sv "XXX" "(Sv):XXX"

The resulting file is then hand edited with the help of native
Swedish speakers to provide idiomatically correct translations.

This scheme worked out well since when APS was placed into
Swedish mode, it was immediately obvious whenever you saw a
string prefixed with “(Sv):” that there were missing translations.
It also made it easy to provide the customer with the complete
set of strings that needed to be translated.

3.9 Interactive Font Experimentation
One of the nice features of Tcl/Tk is named fonts. With a
named font, you essentially create an abstraction layer between
the low level details of a font (size, weight, family, etc.) and the
widgets that use the fonts. Once you create and use the named
font in your widgets, you can later modify the font properties
and instantly have the changes reflected in all of those widgets.

In truth, the usefulness of named fonts didn’t make an
impression on me, and in the initial versions of APS, I worked a
lot harder than I had to in providing a method for experimenting
with font properties. Eventually I discovered the font selection
dialog example in the Welch book Practical Programming In
Tcl and Tk, and adapted it to provide the ability to interactively
experiment with the look and readability from a distance of
various fonts. I should note that my work with this uncovered a
bug (SourceForge ID 483832) when manipulating font
properties on multiple X server applications. For my purposes,
it was sufficient to use a single X server system for
experimentation.

3.10 Automatic Testing with Tk Send
The APS is expected to run continuously for months at a time
without failure. Such systems need to be thoroughly tested
functionally (exercising all the code paths and features), under
stress conditions (many alarms changing state at once), and over
long periods of time (to check for memory leaks, operating
system resource consumption, etc.). Running tests like these
and analyzing the results is very boring, and is a perfect job for
an automated test program.

APS configures itself as it starts up, and the test program needs
to know the configuration so that it can properly manipulate the
process inputs that will cause APS alarm state changes. Rather
than duplicate the logic that reads the configuration files in the
test program, I chose the following approach. When the test
program starts, it sends a command to APS using the tk send
command. The sent command invokes an APS procedure that
uses Tcl’s introspection features to dump all of the array and
variable values to an output file in the form of Tcl statements.
For example, if the APS has the array element
box_geometry(sbox01), we write the statement set
box_geometry(sbox01) “+3123+1258” to the output file. Once
this is done, the test program then creates a new Tcl namespace
and sources the output file into that namespace. The result is
that the test program has access to all the configuration data it
needs in a separate namespace that avoids any conflicts with
variables and arrays in the test program’s default namespace.
Using this data, the completely generic test program can present

the user with APS instance-specific lists of available tests, test
subsets, etc.

Another feature that facilitates testing is the power of the Tk
event mechanism. Using the tk send command, we can simulate
menu traversals, mouse button pushes and releases. When
combined with the Ovation APIs methods for changing process
point values, the ability to simulate user GUI actions, and the
custom Tcl extensions that allow us to test the internal state of
the APS, a complete closed loop test sequence was developed in
a very short period of time.

The basic scheme is to dynamically write the test(s) (based on
configuration values) in one step, and then execute the test(s) in
the second step. Test results are displayed in real-time as well
as being logged and categorized once it is known whether the
test passed or failed. The entire APS can be exercised by simply
starting the test sequence in the evening and checking the results
in the morning. This testing tool has proven very useful for
regression testing, as the addition of new features and
capabilities to the APS has sometimes managed to break old
features or expose latent bugs.

3.11 Interfacing with Netscape and
Acroread
Tcl is good at controlling external programs with the exec
command, and in APS we wanted to be able to control both
Netscape and the acroread PDF reader for displaying HTML and
PDF files respectively. Both acroread and Netscape provide a
command line interface that allows you to specify the name of a
file you want to display using an existing instance of acroread or
Netscape. This avoids the problem of starting multiple instances
if the user neglects (or chooses not) to close a previous one.

Using acroread in this manner was straightforward. One simply
adds the “-useFrontEndProgram” option on the command line,
and acroread uses the existing instance if any, or starts one if
there isn’t one. (Invoke acroread with the “–helpall” option to
see all the available command line options and their syntaxes.).
This means that the same basic command sequence

set command "-display $X_screen(acroread) \
useFrontEndProgram -name APS_acroread "

catch {eval exec $acroread_executable \
$command $PDF_path &} result

can be used every time.

Controlling Netscape was somewhat more complex. The Unix
variant of Netscape provides the “-remote” option (see the URL
http://wp.netscape.com/newsref/std/x-remote.html for details) to
allow for remote control of a Netscape instance via X Windows
features. There are two problems with this interface.. First, the
“-remote” option fails unless an instance of Netscape is already
running on the X display. This means that you cannot just use
the same command line recipe each time you want to display an
HTML file. You must distinguish between the first time and all
subsequent times. In APS, I bypass this problem by simply
starting Netscape as APS starts up, taking care to clean up the
Netscape lock file if necessary. I should note in passing that
checking for the lock file was not as simple as using the Tcl
command “file exists "$env(HOME)/.Netscape/lock”. Netscape
creates the lock file as a symbolic link that looks like

/home/fitchk/.Netscape/lock -> 168.92.189.94:616

which encodes the IP address and the Unix process id. Since
the encoded string is not the name of a file, the file does not
“exist” as far as Tcl is concerned. Instead, I had to use the file
readlink command to see if the lock file was there or not, and to
determine which host created the lock file

At this point, if there is a lock file, we can see if the Netscape
instance was created by the host running APS. If it was, we use
the process ID to kill it before starting a new Netscape instance,
on the theory that the computer crashed or a previous instance of
APS was abruptly killed without have the chance to clean up. If
the Netscape instance was created by another host, we simply
announce that fact and leave it alone.

Note that the very useful (and not immediately obvious) idiom
for finding out one’s own IP address with the Tcl proc

proc my_ip_address {} {
 set me [socket -server garbage_word -myaddr \

[info hostname] 0]
 set ip [lindex [fconfigure $me -sockname] 0]
 close $me
 return $ip
}
came in very handy in this application. I discovered this while
reading the comp.lang.tcl newsgroup one day, and it is a much
cleaner approach than my original scheme of using ypmatch
output or searching through /etc/hosts to make the hostname –
IP address association.

A second problem was a side effect of the thousands of widgets
that APS puts up on the screen. When Netscape is started with
the “–remote” argument and without the “–id window”
argument, it uses the XQueryTree function to search for a
Netscape window on the display. But when there are thousands
of windows, it often takes ten to fifteen seconds to find the right
window ID. That meant that the first time an operator asked for
an HTML file, it took an unacceptably long and unpredictable
time to display it. The “-id window” argument to Netscape
allows the user to specify the window running the target
Netscape instance directly, so that no search is required. The
question then becomes how to find out what the window id is, as
this will be different every time you start up Netscape.

By experimentation, I determined that Netscape names the
window based on the title of the HTML document. I used this
in the startup sequence by synthesizing a simple HTML file with
a known title and then telling Netscape to display that file when
initially started. Then I use the Tcl sequence shown below to
start up Netscape and check at repeated intervals to extract the
window ID using xwininfo.

Note that in practice, these contortions should only be needed in
a system with widget counts in the many hundreds or more.

set URL "$local_file_url_prefix$magic_path"

request the magic page be displayed on the netscape
running on my display

catch {exec $netscape_browser –display $X_screen(netscape) \
$URL -iconic &} netscape_pid

set attempts 0
while {$attempts < 5} {

incr attempts
after 2000
set status [catch {[exec xwininfo -display

$X_screen(netscape) -name "Netscape:
$magic_title"]} result]

if {[regexp {(0x[0-9a-fA-F]+)} $result netscape_Xid]} {
debug_message "xwininfo success"
break

} else {
debug_message "xwininfo failure"

set netscape_Xid 0xdeadbeef
}
}

if {$netscape_Xid == 0xdeadbeef} {
log_message "Netscape inoperative ... continuing"

}

In both cases, we record the Unix process ID (pid) in a Tcl list
named “grim_reaper_list” to use to kill off any instances of
auxiliary processes (e.g. Netscape or acroread) that were started
by APS. When APS exits cleanly, we issue Unix kill commands
on every pid in the grim_reaper_list.

4 SUMMARY OF MY EXPERIENCES
The use of Tcl/Tk as the basis for the APS was a major factor in
what Westinghouse and the Ringhals customer both agree has
been a success to date. (The system is not yet installed and
running, so the final declaration of success must wait.) The
implementation of APS came in significantly under the
projected budget. The ease of making changes and
experimenting with the look and feel of the GUI meant that we
could try stuff without a major effort. This is of great
importance both in involving the customer in the design process
and in winnowing out the ideas that sound good on paper but
end up working poorly in practice.

From my perspective, working with Tcl/Tk is a lot of fun. I
enjoy using powerful programs like Tcl/Tk that allow you to
focus on what you want to achieve without having to deal with
the myriad details of making things like scrollable text windows
with embedded widgets appear on the screen.

Here are some things I’d like to see incorporated into Tcl/Tk.

- A better way of keeping track of torn-off menus.
Currently, a torn off menu becomes an “orphan”
when torn off (it is assigned a widget name of
.tearoff#, where # is some number) and there’s no
easy way to later find the proper widget name to
close the menu when the window that spawned it
closes. Perhaps something as simple as taking the
name of the original menu, replacing all of the
widget tree “.” separators with “_” characters,
and then naming the tearoff as
“.tearoff_<original_with_underscores>” would
work.

- Some form of widget with “transparent”
properties that could be superimposed on another
widget. This feature would have helped me
avoid the development of the alarmtile widget

described above. I’m not sure how difficult this
would be, especially for Windows or Mac.

- A way of having Tcl procedures implicitly
declare as global variables that it cannot find
defined locally in the procedure. The most
frequent Tcl coding error I make is to forget to
add the global statement in every procedure.

And finally, I’d like to thank all the people who have
contributed code or ideas to Tcl/Tk over the years. The APS
was built upon the foundation you laid.

5 REFERENCES
[1] IEC 1226, “The Classification of Instrumentation and
Control Systems Important to Safety for Nuclear Power Plants”,
1993

[2] URL for info about the BARCO EOS:

http://www.barco.com/projection_systems/products/product.asp
?element=342

Figure 10 – The APS Logical Screen - 3840x2048 Pixels

