
Tcl bytecode optimization: some experiences

Kevin Kenny Miguel Sofer Jeffrey Hobbs
GE Global Research Universidad Torcuato di Tella ActiveState Corporation
kennykb@acm.org mig@utdt.edu jeffh@activestate,com
Abstract

Tcl’s bytecode compiler and engine have now been in place for
five releases (8.0 through 8.4). During that time, a number of opti-
mizations have been made. This paper reviews recent optimization
work and attempts to quantify the change in performance that may
be expected when applying certain common optimization patterns.
It also presents directions for future work in improving the perfor-
mance of both the Core commands and extensions.

1. Introduction

In the Dark Ages (that is, about five years ago), the Tcl interpreter
had the dubious distinction of being among the slowest program-
ming language implementations anywhere. The slowness came
largely from the simplicity of its execution model. It is a string
substitution language, with the meanings of strings determined at
run time; all names are bound late. Through release 7.6, it was
implemented naïvely: it was a strict string interpreter.

Tcl 8.0 [7] inaugurated a new execution model that allows for
caching of representations other than strings in a new Tcl_Obj
structure1. It also added a new bytecode compiler and interpreta-
tion engine. The goal of the improvements is to avoid performing
expensive operations such as parsing and formatting strings, with-
out changing the semantics of the language.

1.1 ‘Tcl_Obj’ and literals

A Tcl_Obj is a structure that represents a “string with an internal
representation”. The execution engine uses the internal representa-
tion to remember information about an object. For example, in
evaluating a command such as:

myCommand arg1 arg2 arg3

the string, ‘myCommand’ will be stored in a Tcl_Obj whose
internal representation will announce that it is of type,
‘tclCmdNameType’ and has a value that caches the data needed
to execute the command, ‘myCommand’. When the command is
evaluated again, this information will be available, and there will
be no need to look up ‘myCommand’ in the hash table of com-
mands a second time. This caching is made even more effective by
the use of a shared literal table: when the command above is
parsed, each of the four words is looked up in a table of literal

strings belonging to the interpreter. If other commands being
parsed also have ‘myCommand’ as the first word, the same literal
will be used. In much the same way, the literal string ‘-1’ can
acquire an internal representation as an integer. If it is used in sev-
eral contexts where an integer is appropriate, the value will be
reused without recomputing it from the string.

Tcl_Obj’s can be shared; that is, many structures such as com-
piled scripts, variables, and lists can all share references to the
same objects. Each object has a reference count that manages the
sharing; the interpreter disposes of objects automatically when
they have no references. The internal representation of a
Tcl_Obj can be replaced with another representation at any time,
since any desired representation can be obtained from the string
representation. If the string representation changes, however, the
object is copied unless there is a single reference. This process is
referred to as “copy on write.”

1.2 The compiler and bytecodes

Tcl 8 defines a specialized bytecode language (BCL) and include a
just-in-time compiler that translates Tcl scripts to BCL. It also
includes, of course, a bytecode execution engine: the C function
Tcl_ExecuteByteCode (TEBC for short). TEBC is a stack-
based engine similar to Forth or PostScript. Each interpreter has its
own execution stack of objects. The instruction set contains gen-
eral-purpose instructions for stack manipulation, branching and
conditional branching. Most of its instructions, however, are spe-
cialized to the support of specific Tcl commands; it is a relatively
high-level engine with a complex instruction set.

One of the most important parts of a bytecode object — at least in
terms of performance — is a table that indexes local variables. The
BCL contains specialized instructions for accessing variables in
this table, as well as more generalized instructions that access vari-
ables by name.

2. The compiler/engine subsystem

2.1 Overview

The general execution path of a script is:

1. If the corresponding Tcl_Obj is not of bytecode type, or if it
is not usable in the current execution context, parse the string
representation of the script and compile the script, storing the
bytecode representation in the Tcl_Obj.

2. Execute the script by invoking TEBC.

There are a few exceptions to this path. Most notably, commands
such as [eval] and [uplevel] do not compile the script,
because the script is assumed to be a temporary object, and it will

1. The name of the structure is something of a misnomer; a
Tcl_Obj is not an object in the sense that object-oriented
programming generally uses the term. Tcl_Value would
have been a better choice, but the name was already taken.

not be possible to reuse bytecode. Also, if the script is a pure list
object (that is, it has a list internal representation but no string rep-
resentation), then the engine can safely assume that it is a single
pre-parsed command, and that command is executed directly with-
out reparsing it.

Since an application can redefine even built-in commands such as
[if] and [set], the compiler must be extremely modular. In
essence, every command that can be compiled to special-purpose
bytecodes has its own compiler to generate them. When compiling
a script, the compiler checks for the existence of a compiling func-
tion for each command that it encounters. If such a function exists,
the compiler calls it. Otherwise, the compiler generates instruc-
tions to invoke the command at run time.

At present, the interpreter does not export any interfaces to provide
functions that compile commands defined by Tcl extensions such
as Tk; only the Tcl built-ins themselves can be compiled to in-line
code. Most of the built-in commands use special-purpose byte-
codes. For this reason, any extension to the compiled command set
has to be accompanied by a corresponding extension to the BCL
and to TEBC.

2.2 What’s new in Tcl 8.4?

As with each new release since Tcl 8.0, the compiler, engine and
runtime library contain a number of enhancements to make Tcl
programs faster.
The compiler. A number of commands that were executed at run-
time in earlier releases are now compiled; these include
[append], [lappend], [lindex], [list], [llength],
[lset], [regexp], [return], [string] and
[variable]. Of particular interest is the new [lset] com-
mand. It, together with [lindex], allow for direct manipulation
of lists, essentially treating them as linear arrays. If an algorithm
needs to change an element of a structure, accessing it directly by
position, [lset] is by far the fastest way to do so in Tcl.

The compiler’s ability to recognize and cache local variables is
much improved over Tcl 8.3. In particular, it recognizes variables
that are not set within a procedure; speeding up code like

proc x {} {
global y

 return foo_$y
}

In addition, a number of miscellaneous improvements have been
made. Constant conditions (e.g., if {0} {...}) are resolved
at compile time, and procedures with empty bodies compile to
nothing; these two changes mean that the [assert] command in
tcllib costs nothing if assertions are not enabled. Loops using
[for] and [while] are changed to move unconditional
branches outside the loop body; in other words, code like

while { ... condition ... } { ... }

which formerly compiled code looking like:

x: ... test condition ...
branch-if-false y
... body of loop ...
goto x

y:

now generates the more efficient:

goto y
x: ... body of loop ...
y: ... evaluate condition ...

branch-if-true x

The engine. Of course, the new commands added to the compiler
required new instructions in TEBC. In addition, many changes
improve various small and frequently-used pieces of the engine.
One critical change is the fact that the code that accesses local vari-
ables is now inlined in TEBC, rather than calling Tcl_SetVar2;
this change speeds up almost any Tcl procedure.

In addition, a number of peephole optimizations are added. Code
that pushes values on the stack only to pop them again immedi-
ately is optimized away. Branch instructions that target other
branch instructions are retargeted. Tests for equality are optimized
so that comparisons of an object with itself are short-circuited. The
[foreach] and [catch] commands have significant speedups
from various miscellaneous improvements.

Finally, there is a significant performance improvement in the area
of stack access and management of the lifetime of Tcl_Obj val-
ues. The top couple of stack locations are maintained in the engine
in local variables rather than actually being pushed to the stack. In
many cases, this management avoids stack operations entirely in
simple commands and expressions.
The runtime library. The runtime library has several new fea-
tures that support these improvements. It has a new set of
Tcl_Obj internal representations that cache variable references,
and a new internal API, TclPtrSetVar, that accesses a variable
directly rather than by name. The lookup of fully qualified names
(names beginning with the :: namespace delimiter) is signifi-
cantly faster.

In addition, the performance of commands created by [interp
alias] is much improved; there is a Tcl_Obj internal repre-
sentation that caches the command reference so that the alias does
not need to be looked up each time it is evaluated.
Summary. Most Tcl programs see substantial improvements from
all these changes, but the precise effect is difficult to quantify
because so many of them affect specific language constructs while
leaving others unchanged. In the next section, we will examine in
more detail how to structure Tcl programs to achieve the best per-
formance that Tcl 8.4 has to offer.

3. Speeding up your scripts in Tcl 8.4

The cardinal rule of optimization is worth repeating: Never opti-
mize without instrumenting. It’s essential that you have a clear idea
of what you want to achieve by optimization, and a clear idea of
where your code is spending its time. It’s possible to waste
immense amounts of programmer time improving code that turns
out to be used rarely enough that it makes no significant difference
to the performance of the program as a whole. Tools like the
[time] command, the tclbench program2, and the profiler from
TclX3 are all indispensable.

2. The tclbench program is available at SourceForge as a mod-
ule within the tcllib project: http://tcllib.sf.net/

3. TclX is now apparently being maintained as SourceForge:
http://tclx.sf.net

3.1 A concrete example: GC-counting

A careful choice of algorithms that considers the peculiarities of
the Tcl core can achieve performance gains of up to an order of
magnitude. Some examples can be found in the tclbench bench-
mark suite; of particular interest are the improvements that resulted
from tuning the base64, md5, and sha1 procedures in tcllib. Many
other impressive tuning results have been reported on the Tcl’ers’
Wiki ([2], [9],[12]).

Bastien Chevreux [3] reports in detail on one particular example,
that of determining the fraction of letters in a DNA sequence that
are G and C. Essentially, his problem is to count the number of
occurrences of a particular set of letters in a string. Figure 1 shows
in graphical form the results of nineteen different implementations
that he tried, and their relative performance on Tcl 8.3.4 and
Tcl 8.4. The topmost implementation, GCCont_r1, is a “naïve”
translation of a C function that performed the calculation; the
remaining implementations are various attempts, some better than
others, to improve its performance. (Details of the various imple-
mentations are available in Chevreux’s paper.)

Several things are noteworthy in examining these results, which
are typical of a concerted effort to optimize Tcl code:

• The speedup that can be achieved by careful coding at the Tcl
level is much greater than the speedup obtained by upgrading;
the fastest implementation in 8.3.4 is 8.5 times faster than the
naïve implementation, while upgrading to 8.4 would gain
only a 20% improvement.

• For most programs, Tcl 8.4 is noticeably faster; for a few, the
improvement is a factor of three or more.

• The improvement to the performance the various implemen-
tations is by no means consistent; some are spectacularly bet-
ter, while some are even slightly worse, according to the
specific language features they use. This non-uniformity
underscores the importance of measuring code, rather than
simply following guidelines.

Despite the difficulty of offering specific guidelines for making Tcl
code run faster, a few general principles can be observed. The next
few sections discuss some of these.

3.2 Avoid coding in Tcl if a desired function is
available in C

Some Tcl commands are implemented in C code that is carefully
optimized for speed or memory consumption. In particular, loops
in C are much faster than loops in bytecodes, so it pays to look for
ways in which your loops can be “flattened” into single Tcl state-
ments.

Iterate over lists with the [foreach] command, and use the
extended [foreach] syntax. Consider the following example:

proc test1 { list } {
 foreach item $list {
 set x $item
 }
}

0 5 10 15 20 25

GCCont_expr::cGCC

GCCont_cpbrs2::cGCC

GCCont_cpbrs::cGCC1

GCCont_cpbre2::cGCC

GCCont_cpb::cGCC

GCCont_rsf2::cGCC2

GCCont_rsf1::cGCC

GCCont_i::cGCC2

GCCont_r3::cGCC

GCCont_r1::cGCC

Relative time (1=best achieved in Tcl 8.3.4)

Tcl 8.3.4
Tcl 8.4

Figure 1. Benchmark results for competing implementations of a typical Tcl procedure.

proc test2 { list } {
 set imax [llength $list]
 for { set i 0 } \
 { $i < $imax } \
 { incr i } {
 set x [lindex $list $i]
 }
}
set list {1 2 3 4 5 6 7 8 9}
puts [time {test1 $list} 10000]
puts [time {test2 $list} 10000]

Running the program gives the result:

11 microseconds per iteration
16 microseconds per iteration

showing how the C-coded loop is faster. The results are even more
impressive when iterating through multiple lists in parallel.

Generate lists using [split] or [binary scan] so as to
exploit [foreach]. Consider code that iterates through the char-
acters in a string, reduced to its bare essentials:

proc count1 { s } {
 set j 0
 set l [string length $s]
 for { set i 0 } { $i < $l } \
 { incr i } {
 set letter [string index $s $i]
 incr j
 }
}

proc count2 { s } {
 set j 0
 foreach letter [split $s {}] {
 incr j
 }
}

set string {The quick brown fox}
append string $string
puts [time {count1 $string} 10000]
puts [time {count2 $string} 10000]

Once again, the code using [foreach] wins4:

80 microseconds per iteration
52 microseconds per iteration

An extension to this is that it’s often faster to bring an entire file
into memory and process it there. The following program shows a
line counter implemented as a loop using [gets] and then as a C-
coded loop:

proc test1 { filename } {
 set count 0
 set f [open $filename r]
 while { [gets $f line] >= 0 } {
 incr count

 }
 close $f
 return $count
}

proc test2 { filename } {
 set f [open $filename r]
 set data [read -nonewline $f]
 close $f
 set count 0
 foreach line [split $data \n] {
 incr count
 }
 return $count
}

[foreach] wins every time, unless memory consumption is pro-
hibitive:

905 microseconds per iteration
675 microseconds per iteration

3.3 Choose how to evaluate scripts

The [uplevel] and [eval] commands, by design, do not
compile the scripts that they evaluate. By avoiding the overhead of
compilation, they get the best performance for strings that are eval-
uated only once, as when they have been read from a file or input
from the user. For this reason, they are much slower than bytecode
interpretation, and you can get much better performance in code
that evaluates the same string repeatedly by using other commands
to do it.

The fastest way to evaluate a constant string, if possible, is to com-
pile it into a procedure. Procedures can take advantage of several
optimizations, such as the local variable table, that are not avail-
able to other bytecode-compiled strings.

If for some reason you can’t use a procedure, you can at least eval-
uate a constant string using one of the commands that caches a
bytecode representation:

• [uplevel #0 $script] can be replaced with
[namespace eval :: $script] or [interp eval
{} $script].

• [eval $script] can be replaced with [if 1
$script].

• [uplevel 1 $script] can be replaced with, believe it
or not, [uplevel 1 [list if 1 $script]]. (Read
on to see why this last change works.)

Commands that would otherwise involve substitution can also be
sped up, by constructing them as pure lists. Pure lists are the output
of commands such as [list] and [lappend] before they have
acquired string representations. The interpreter knows that such
lists need no substitutions and always consist of a single command.
Rather than constructing a string representation of a pure list and
handing it off to the parser, it interprets the first element of the list
as a command name and the remaining elements as its parameters.
It is therefore must faster (as well as more reliable in the face of
special characters) to say

eval [list $command $arg1 $arg2]

4. Here we are also seeing the difficulty of executing [string
index] against a UTF-8 string. The [split] command is
able to walk the multibyte sequences once, while [string
index] scans them repeatedly.

than to say

eval “$command $arg1 $arg2”

The following code illustrates the results of some of these tech-
niques:

proc test1 { script } {
 uplevel 1 $script
}
proc test2 { script } {
 uplevel 1 [list if 1 $script]
}
puts [time {test1 {set x 1}} 10000]
 # parses the script every time
puts [time {test1 [list set x 1]} 10000]
 # evaluates the command directly
puts [time {test2 {set x 1}} 10000]
 # caches bytecodes

Evaluating lists and evaluating bytecodes are both nearly twice as
fast as evaluating strings:

18 microseconds per iteration
10 microseconds per iteration
9 microseconds per iteration

In addition to taking care to evaluate constant scripts, it’s impor-
tant to evaluate constant expressions as well. Always use braces
around the arguments to [if], [while], and [expr]!

3.4 Avoid shimmering

Shimmering refers to repeated conversion among string and inter-
nal representations. The conversion is, of course, somewhat expen-
sive, and should be avoided.

One very common source of this shimmering is the use of numbers
as indices into arrays. This usage is natural to C, but awkward in
Tcl. The Tcl counterpart to C’s arrays is the list. Code that accesses
arrays linearly with a for loop in C can be replaced with a
[foreach] loop in Tcl. Code with other access patterns can be
replaced with [lindex] and [lset]. A good example of opti-
mizing code with irregular access patterns can be found at [9],
which demonstrates code that shuffles the elements of a list into
random order.

Another cause of excess shimmering is mistakenly using lists as
strings. If you care about performance, never check whether a list
is zero-length with code like

[string compare {} $args]

This code will generate the string representation of the list to com-
pare it against the empty string! Much preferable is to say

[llength $args] == 0

which will use the length of the list representation and avoid gener-
ating the string. You should also watch out for code that treats
numbers as strings. While it was once a Tcl idiom to coerce an
integer to a floating point number by appending .0 to it:

set float ${int}.0

that method passes it through the string representation. Much pre-
ferred is:

set float [expr { double($int) }]

3.5 Optimize variable access

The bytecode compiler contains a number of optimizations to
make variable access faster, but these optimizations work differ-
ently between different constructs. In order from fastest to slowest,
the preferred methods for variable access are:

1. Local variables in procedures; these are resolved at compile
time and accessed directly by reference.

2. Variables imported into a procedure with [global],
[variable] or [upvar].

3. Variables accessed via a fully-qualified path name:
$::foo::bar::grill.

4. Variables represented by a partially-qualified name, that is,
one without a leading namespace delimiter:
$foo::bar::grill. Note that these variables can be
cached only in a single context. If a variable name like this
appears in multiple procedures, it will shimmer5.

5. Variables resolved at run time. Excessive use of [eval],
[subst], or non-constant first arguments to [set] is a
performance killer.

3.6 Avoid unnecessary copying of internal rep-
resentations.

The fact that Tcl_Obj values are shared, with “copy on write”
semantics, can cause excessive copying of the internal representa-
tions. The reason is that the engine doesn’t know that values are
about to go out of scope. Consider the statement:

set list [lreplace $list end end]

Let’s walk through what the engine does with this.

• The variable list is looked up, and its value is pushed to the
execution stack. There are now two active references to the
variable, one in the variable and one on the stack.

• The [lrange] command is invoked. Finding two active ref-
erences to its argument, it is forced to copy it. It can then
delete the last element and return the result.

This type of copying is best avoided by using Tcl’s commands that
perform read-modify-write operations on variables:

• Prefer [incr x] to [set x [expr { $x + 1 }].

• Construct long strings using [append] and long lists with
[lappend].

• Use [lset] to modify elements in the middle of lists.

For operations that don’t have built-in read-modify-write com-
mands, Donal Fellows offers one solution, the [K] combinator.

proc K { x y } { return $x }

5. This behavior is arguably a bug caused by over-eager sharing
of literal strings in the compiler, and may be fixed in a patch
release. For Tcl 8.0 through 8.4.0, you should be aware of it.

This procedure is invoked as [K $x [set x {}]. It provides a
destructive readout of the variable x:

• The value of x is pushed to the stack; that Tcl_Obj now has
two references.

• The empty string is now placed in x, destroying the reference
to x’s previous value. The Tcl_Obj on the stack now has a
single reference.

• The empty string is now pushed on the stack as the second
parameter to [K]. [K] unstacks its two parameters and
returns the first — which is now unshared. Having an
unshared value allows commands like [lreplace] to
manipulate the value without copying it. The following exam-
ple shows two procedures that each add 10000 elements to a
stack and remove them again. One is forced to copy the repre-
sentation of the stack, and the other preserves it.

proc test1 {} {
 for { set i 0 } { $i < 10000 } \
 { incr i } {
 lappend list $i
 }
 for { set i 0 } { $i < 10000 } \
 { incr i } {
 set list [lreplace $list end end]
 }
}
proc test2 {} {
 for { set i 0 } { $i < 10000 } \
 { incr i } {
 lappend list $i
 }
 for { set i 0 } { $i < 10000 } \
 { incr i } {
 set list [lreplace \
 [K $list [set list {}]] \
 end end]
 }
}
puts [time test1]
puts [time test2]

The performance difference achieved by avoiding the copy is spec-
tacular, nearly a fifty-fold speed improvement:

2574945 microseconds per iteration
54666 microseconds per iteration

One other thing is worth noting in the examples given above: the
use of [lreplace] as opposed to [lrange]. The [lrange]
and [string range] commands always copy the sublist or
substring that they manipulate. The [lreplace] command, on
the other hand, will reuse an existing representation if it is
unshared. For this reason, combinations of [lrange] and
[lappend], with appropriate use of [K], are the foundation of
the struct::stack and struct::queue modules in tcllib.

3.7 Prefer [string] to regular expressions

Regular expressions are amazingly powerful, and for complex
string-matching tasks, they are the right tool for the job. For sim-
pler operations, though, the [string] command is much faster
because much of it can be compiled to in-line code. In particular,
you should use [string map] where possible in preference to

[regsub], and [string match] or [string first] in
preference to [regexp].

3.8 Take good care of your internal representa-
tions

In some cases, such as generating large lists, converting large
strings between UTF-8 and UCS-16, or doing multiple hash table
lookups (as in parsing long namespace strings such as
::a::b::c), the interpreter has to do a lot of work to make an
internal representation. In performance-critical code, these hard-
won internal representations are precious, and it pays to preserve
them.

The stooop package in tcllib gives a good example. When using
a variable x within an instance y of a class c, it needs to generate a
name like ::c::y::x. When the instance is created, the variable
name is stored in an array. When the variable is accessed within an
instance, the name is retrieved from the array, preserving the inter-
nal representation of the name (which contains the variable refer-
ence).

3.9 Never put off to run time what you could do
at compile time.

If you are truly desperate for performance without resorting to C
coding, you also should consider giving the bytecode compiler as
much of the work as possible. Sometimes doing so involves inlin-
ing other procedures. Since Tcl at present lacks an “inline proce-
dure” or “macro” facility, you need to invoke [proc] with a
generated string to add inline code. This technique can also be
used to inline constants that would otherwise be stored in global
variables. Any example of the technique is, alas, lengthy; inter-
ested readers should examine [2] for an example where a tenfold
improvement was achieved on a particular benchmark involving a
random number generator.

4. Directions for future work

The discussions above provoke a number of ideas where Tcl’s
bytecode performance could be improved substantially. Some of
the ideas are better investigated than others; this section describes
some of the more promising lines of attack.

4.1 Macros or inline procedures

One thing that is still fairly slow in Tcl is procedure invocation.
Because of the dynamic nature of the language, there is a fair
amount of work that the engine has to do when invoking a proce-
dure, including checking for command traces, establishing a new
activation context that includes facilities for dynamic lookup of
commands and variables, and bookkeeping for [info level]
and $::errorInfo.

For simple, short procedures that don’t require much of Tcl’s
dynamic nature, programmers would want the ability to generate
inline code. A command with a name like [macro] or
[inlineProc] could provide such a facility, and would not
require any major redesign of the execution engine.

Another feature that is requested often is to give C-coded exten-
sions the ability to compile extension commands to bytecodes.
This facility would be ideal for object-oriented extensions that
contain conventional Tcl code but add additional access paths for
methods and variables. It would also be an easy way to experiment
with additional commands that have “read-modify-write” seman-
tics [1].

4.2 Changes to the bytecode language

Another improvement that has been requested frequently is the
ability to code directly at the bytecode level. TAL (Tcl Assembly
Language) has been used as the working name for such a project.

Implementing TAL would not be horribly difficult. Loading byte-
codes without directly compiling Tcl code has already been
addressed in the TclPro Compiler. Defining an assembler syntax
for the bytecodes would be simple. Providing script-level access to
the bytecodes, together with a good macro facility, would permit
the generation of code that is both fast and portable.

Unfortunately, current instructions have a high semantic content
and are quite specialized to the implementation of specific com-
mands. A Tcl assembly language (TAL) would not be very useful
under these circumstances — hand-coded bytecodes would likely
perform no better than those generated by the compiler.

In order to allow a wider usage of the instruction set, perhaps even
permitting much of Tcl to be coded in TAL and Tcl itself, the
engine would need to provide a richer instruction set. The pre-
ferred approach is to factor out oft-used coded into new low-level
instructions: essentially making Tcl’s virtual machine less of a
CISC architecture and more of a RISC one. The current implemen-
tation of the bytecode would not adapt readily to the RISC
approach, because the instruction execution loop is relatively
expensive. (We shall return to this issue in the next section.)

Let us assume for a moment that this problem has been solved, and
that a macro facility is available. The benefits that could be
obtained from an efficient TAL include:

• A much smaller and stabler C kernel for Tcl, with the rest of
Tcl built portably in TAL and Tcl itself - many improve-
ments and bug fixes would only require upgrading some
scripts.

• The parser, compiler, and optimizer could all be written in
TAL, allowing even different versions to coexist - “fast com-
pile”, “fast exec” and “debug” versions could be loaded at
runtime, possibly choosing different versions for different
procedures.

• Scripts could define new compiled commands via a compil-
ing function, or define procedure bodies directly in a mix of
Tcl and TAL — enabling fast, portable libraries with easily
hidden source code. These capabilities are far beyond the pos-
sibilities offered by the current TclPro Compiler.

These benefits overlap significantly with the goals of the CriTcl
project [8], which is in a much more mature state of development.
The two projects are probably complementary. CriTcl would be
more suitable for programming low-level algorithms (say, a hash
function), or for accessing inherently non-portable API’s provided
by a target system. TAL, on the other hand, would be well suited
for higher level constructs relying mainly on the Tcl library.

4.3 Improving the execution engine

An important part of the cost required to execute bytecodes, and
the main barrier to the implementation of a lower-level BCL, is the
“execute the next instruction” process. The current implementation
involves switching on the value of a byte. The implementation of a
typical bytecode instruction ends with a jump to the top of the
interpretation loop:

 top:
 switch (*pc) {
 ...
 case INST_LOAD:
 ...
 goto top;
 ...
 }

In compilers that implement the switch statement with indirect
jumps (the best case: other compilers generate even worse code),
the generated code to advance to the next instruction must:

1. jump to the top of the switch statement
2. read the next bytecode B = *pc
3. test that B is within range
4. compute an offset off = B * sizeof(void *)
5. read the target T = *(jumpTable + off)
6. jump to T

This sequence cannot be optimized much by the C compiler.

Special extensions to the C language may provide some shortcuts.
For example, MSVC++ allows the generated code to skip step 3 if
enumerated types are used appropriately.

A more interesting example is provided by the “labels as values”
extension in GCC[11]. This extension provides functionality simi-
lar to Fortran's “assigned GO TO”. It allows saving jump targets
corresponding to labels in variables, and later jumping to them. It
is relatively simple to implement an improved algorithm - a medio-
cre version of what Forth programmers call “token threading”[6].
One of us tested this approach in an experimental engine6 with
encouraging but not overwhelming results (bytecodes executed 10-
20% faster). The C code for a typical bytecode instruction looked
like:

 ...
 INST_LOAD:
 ...
 goto *(jmpTable[*pc]);
 ...

which compiles to

1. read the next bytecode B = *pc
2. compute the offset off = B * sizeof(void *)
3. read the target T = *(jumpTable + off)
4. jump to T

Note that in addition to reducing the number of machine instruc-
tions, the code improves the locality of reference of the program

6. The experimental code is still available in the CVS repository,
under the branch tag, S4, but it is far behind the current
implementation.

counter by omitting a jump to the top of the loop. The improved
locality also speeds up the code by reducing the probability of
cache misses.

A more interesting possibility[10] is to have the Tcl compiler gen-
erate indirect threaded code instead, storing, instead of bytecodes,
the machine addresses of the C statements that execute the con-
structs. Under this scheme, the code for a typical bytecode instruc-
tion would look like

 ...
 INST_LOAD:
 ...
 goto **pc
 ...

This approach avoids both subscript calculation and reading the
jump table at run time. This model is used in GNU Forth [5] for
threaded code.

This approach has both exciting possibilities and drawbacks:

• It requires using gcc, or else defining small macros that pro-
duce the compiler-and-processor-dependent instructions to
emulate "labels as values".

• It enables further, finer optimizations to the calling sequence,
as studied and implemented in the gforth project. It may also
open up the possibility of compiling to machine code by
copying and pasting the code from the succesive instruc-
tions, accessible through the labels. We have not yet exten-
sively explored the consequences of this idea.

• The best implementation of this method is probably to use a
two-stage compiler. The first stage compiles to portable
bytecodes, while the second stage generates the non-relocat-
able threaded or machine code.

• Other similar optimizations could take place while this non-
relocatable code. For instance, the second-phase compiler
could address literals directly rather than looking them up in a
table, code numeric operands in the machine’s native format,
and perform other machine-specific conversions.

• The “machine code” that is discussed in this section need not
be native code. It would at least hypothetically be possible for
the “machine code” to be bytecodes for the Java Virtual
Machine or the Common Runtime Environment, allowing
direct integration with Java or .NET.

The two-stage compiler mentioned above is also needed for com-
patibility with the existing TclPro Compiler and its companion
loader, tbcload. Compiled code that has been stored for one
machine may need to be loaded upon another, and the enviroment
in which it is loaded may not be the same version of the execution
engine. A neutral intermediate format is critical to making a
threaded-code scheme work.

4.4 Addressing literal sharing

There are a few cases where excessive shimmering appears to be
unavoidable when executing Tcl code:

• Command and variable names frequently have to be recon-
verted from their string representation, because they are being
evaluated in different namespace contexts. Even when a given

string such as ‘set’ resolves to the same command, it needs to
be looked up in each context.

• Simple strings such as ‘0’ have multiple interpretations, each
of which has its own internal representation. ‘0’, for instance,
can designate an integer zero, a floating-point zero, a charac-
ter string, a one-element list, and several other things. If code
uses the same string in different contexts, the string can shim-
mer repeatedly.

These problems result from the fact that, in an effort to gain the
maximum benefit from cached internal representations, the com-
piler shares literals across the entire interpreter. The next step
toward reducing shimmering is to copy objects more aggressively
when developing complex internal representations, and to reduce
the scope of literal sharing, perhaps making literals local to indi-
vidual procedures. It may prove that the best approach is not to
share literals at all, but rather to generate a new Tcl_Obj for each
word in a script.

4.5 Polymorphic, mutable objects

Extension writers have also often requested polymorphism of the
Tcl_Obj internal representation. Typically, an extension writer
discovers that polymorphism is required when trying to implement
an object that mirrors a C structure. Often, the writer will try to
represent the structure as a Tcl list comprising its fields, only to
discover that there is no way to have the Tcl_Obj contain both
representations; it is easy to generate a string representation that
converts to the appropriate list, but the structure is lost as soon as
the list internal representation is generated. This restriction does
not lead to excessive shimmering in practice — because it causes
extension writers to avoid representing objects transparently in this
fashion! Instead, they normally represent objects by handles: arbi-
trarily chosen names that designate the objects. This representation
causes trouble with lifetime management (the handles are stored in
separate hash tables, and are not reference counted), and require
additional code to look them up and convert them to object refer-
ences.

Extension writers, and Tcl programmers in general, also have
widely requested mutable objects. The copy-on-write semantics of
Tcl are not appropriate to everything. For instance, programmers
often want to pass collections of objects by reference and operate
on the collections, not on copies. In Tcl, one usually handles pass-
by-reference by [upvar], and there is no natural way to store a
reference to an object. Alan Perlis’s remark that “Lisp program-
mers know the value of everything, but the cost of nothing,” is
even more true of Tcl!

Paul Duffin, in his Feather system[4], implemented a number of
types of mutable objects, and introduced polymorphism by allow-
ing an internal representation to export multiple interfaces. An
object could behave as a list, for instance, by exporting a ‘list’
interface that allows callers to inspect and set list elements.

No serious effort has yet been made to integrate Feather into the
Tcl core. Although the integration effort would involve a fair
amount of work, that is not the chief reason for the delay. Rather, a
number of issues need to be addressed. Chief among these is that
the presence of polymorphic, mutable objects breaks Tcl’s contract
that “everything is a string.” In particular:

• Interpolating an object into another string (as with
“a${x}b”) flattens it to a sequence of characters. If ${x}

contains an object reference, there is no guarantee that the
same object would be constructed if the characters are subse-
quently converted back to a reference.

• Interpolating a handle into a string presents issues with life-
time management. If ${x} contains a handle, there is no
guarantee that the object will still be available if the handle is
converted to a string and back to an object reference.

These issues seem to be a potential source of insidious bugs in
scripts. While users of products such as TclBlend and Jacl seem to
be able to deal with them readily, careful consideration will be
needed before inflicting them upon the broader Tcl community.

In addition to issues of lifetime management, mutable objects
introduce subtler changes into Tcl’s semantics. In particular, if sev-
eral variables contain references to the same mutable object, what
should variable traces do when one of the variables is used? If the
interpreter is required to track down all the uses of the object to fire
potential traces, most of the advantages of mutable objects would
be lost. If it bypasses the traces instead, it is possible for the string
representation of a variable to be accessed or changed without the
corresponding traces firing. Neither of these choices seems natural
to Tcl.

All these considerations notwithstanding, it seems likely that in
Tcl 9, when radical semantic changes can be contemplated, some
sort of Tcl_Obj polymorphism and mutability will be consid-
ered.

4.6 New object types

In some cases, when something cannot be fully compiled, at least
part of the work of the compiler could be saved. It would be attrac-
tive at least to have a couple of new internal representations:
parsedScript, which would allow parsing a script and reuse of
its parse tree in situations where bytecodes cannot be saved, and
hashedString, which would save the computed hash code for a
string for use where the string can be used as a key into different
hash tables.

More speculatively, one can imagine a data type that is specific to
constructed strings[13] (ones built up by substitution) and to sub-
strings (as extracted by commands like [string range] and
[regexp]). Such a data type could:

• Allow for extraction of substrings without copying them in
memory.

• Allow preserving internal representations of parts of strings,
so that object references interpolated into strings can be
recovered.

• Allow caching information about the provenance of strings,
for instance the file name and line number where they
occurred. This information would enable line-based debug-
ging, source-file tagging in stack traces, and similar facilities
which now require a secondary tool like the TclPro Debugger.

Together with such a data type, we could also envision storing
short literal strings in the Tcl_Obj structure itself, so that they
would not require any additional memory allocation. Both these

changes would break a good bit of existing C code, so would have
to wait for Tcl9.

5. Conclusions

Between Tcl 7.6 and 8.0, there was an improvement in perfor-
mance of about an order of magnitude for typical Tcl scripts.
Releases 8.1 through 8.3 displayed a distressing trend to get incre-
mentally slower (largely because of the demands imposed by Uni-
code support). In 8.4, the efforts of a number of Tcl maintainers
have reversed this trend and made substantial additional improve-
ments to performance.

Many additional optimizations, mostly relating to object copying
shimmering, can be foreseen. Some of them simply need program-
ming; others represent changes to the Tcl language semantics and
will need a new major release before they can be considered.

Tcl’s reputation as a “slow” language is largely undeserved, not
least because it is most appropriately used as an interface layer to
connect codes in other languages. Moreover, careful coding with
attention to how the interpreter manages data can result in order-
of-magnitude improvements in Tcl performance.

References
[1] “The anatomy of a bytecoded command.” http://

wiki.tcl.tk/1604
[2] “Can you run this benchmark 10 times faster?” http://

wiki.tcl.tk/1173
[3] Chevreux, Bastien, Christoph Göthe, and Sebastian Lepe.

“Writing commercial-grade multiplatform end-user
applications with Tcl/Tk and PowerTcl.” Proc. 2nd European
Tcl/Tk Workshop, München, 2002. http://www.t-
ide.com/tcl2002e/bach_tclpaper.ps.gz

[4] Duffin, Paul. “Feather: teaching Tcl objects to fly.”
[5] Ertl, M. Anton. “A portable Forth engine.” Proc.

EuroFORTH Conf., 1993. http://www.complang.
tuwien.ac.at/papers/ertl93.ps.gz

[6] Ertl, M. Anton. “Threaded code.” Unpublished report, Institut
für Computersprachen, Technischen Universität Wien.
http://www.complang.tuwien.ac.at/forth/
threaded-code.html

[7] Lewis, Brian. “An on-the-fly bytecode compiler for Tcl.”
Proc. 4th Intl. Tcl/Tk Workshop. Monterey, Calif: USENIX,
1996, pp. 103-114. http://www.usenix.org/
publications/library/proceedings/tcl96/
lewis.html

[8] “Scripted compiler.” http://wiki.tcl.tk/3687.
The paper of Steve Landers and Jean-Claude Wippler
presented at this conference describes the ideas more
formally.

[9] “Shuffle a list.” http://wiki.tcl.tk/941
[10] Sofer, Miguel, et al. “MS’s bytecode engine ideas.” http:/

/wiki.tcl.tk/1685
[11] Stallman, Richard, et. al. Using the GNU Compiler Collection

(GCC). Cambridge, Mass.: Free Software Foundation, 2002.
http://gcc.gnu.org/onlinedocs/gcc/Labels-
as-Values.html

[12] “Tcl performance.” http://wiki.tcl.tk/348
[13] “Tcl9 and annotated strings.” http://wiki.tcl.tk/

3073

	Tcl bytecode optimization: some experiences
	Abstract
	1. Introduction
	1.1 ‘Tcl_Obj’ and literals
	1.2 The compiler and bytecodes

	2. The compiler/engine subsystem
	2.1 Overview
	2.2 What’s new in Tcl 8.4?
	The compiler
	The engine.
	The runtime library.
	Summary.

	3. Speeding up your scripts in Tcl 8.4
	3.1 A concrete example: GC-counting
	Figure 1. Benchmark results for competing implementations of a typical Tcl procedure.

	3.2 Avoid coding in Tcl if a desired function is available in C
	3.3 Choose how to evaluate scripts
	3.4 Avoid shimmering
	3.5 Optimize variable access
	3.6 Avoid unnecessary copying of internal rep resentations.
	3.7 Prefer [string] to regular expressions
	3.8 Take good care of your internal representa tions
	3.9 Never put off to run time what you could do at compile time.

	4. Directions for future work
	4.1 Macros or inline procedures
	4.2 Changes to the bytecode language
	4.3 Improving the execution engine
	4.4 Addressing literal sharing
	4.5 Polymorphic, mutable objects
	4.6 New object types

	5. Conclusions
	References
	[1] “The anatomy of a bytecoded command.” http:// wiki.tcl.tk/1604
	[2] “Can you run this benchmark 10 times faster?” http:// wiki.tcl.tk/1173
	[3] Chevreux, Bastien, Christoph Göthe, and Sebastian Lepe. “Writing commercial-grade multiplatform end-user applications with Tcl/Tk and PowerTcl.” Proc. 2nd European Tcl/Tk Workshop, München, 2002. http://www.t- ide.com/tcl2002e/bach_tclpaper.ps.gz
	[4] Duffin, Paul. “Feather: teaching Tcl objects to fly.”
	[5] Ertl, M. Anton. “A portable Forth engine.” Proc. EuroFORTH Conf., 1993. http://www.complang. tuwien.ac.at/papers/ertl93.ps.gz
	[6] Ertl, M. Anton. “Threaded code.” Unpublished report, Institut für Computersprachen, Technischen Universität Wien. http://www.complang.tuwien.ac.at/forth/ threaded-code.html
	[7] Lewis, Brian. “An on-the-fly bytecode compiler for Tcl.” Proc. 4th Intl. Tcl/Tk Workshop. Monterey, Calif: USENIX, 1996, pp. 103-114. http://www.usenix.org/ publications/library/proceedings/tcl96/ lewis.html
	[8] “Scripted compiler.” http://wiki.tcl.tk/3687. The paper of Steve Landers and Jean-Claude Wippler presented at this conference describes the ideas more formally.
	[9] “Shuffle a list.” http://wiki.tcl.tk/941
	[10] Sofer, Miguel, et al. “MS’s bytecode engine ideas.” http:/ /wiki.tcl.tk/1685
	[11] Stallman, Richard, et. al. Using the GNU Compiler Collection (GCC). Cambridge, Mass.: Free Software Foundation, 2002. http://gcc.gnu.org/onlinedocs/gcc/Labels- as-Values.html
	[12] “Tcl performance.” http://wiki.tcl.tk/348
	[13] “Tcl9 and annotated strings.” http://wiki.tcl.tk/ 3073

