
Ten Years of Rapid Development
Mark Roseman

mark@markroseman.com

Abstract
Over the past ten years, Tcl has been a key development tool for a
range of collaborative systems, ranging from academic research
prototypes to large-scale use in commercial web conferencing
products. This paper examines how this use of Tcl evolved,
highlighting some lessons for developers of growing systems, and
focusing on how well Tcl can support traditional software
engineering practice. Tcl was also made a focus of technical due
diligence during a company acquisition, and many of the positions
offered in its support may prove useful to others facing
management pressure over their choice of development tool.

1. If Development was so Rapid…
For the past ten years, I’ve been involved in the development of a
series of collaborative systems built using Tcl. These systems
encompassed the spectrum from a Tcl extension to aid in
academic research prototyping, to several large, robust desktop
and web-based commercial products.

Like so much Tcl development work, very small and focused
development teams built these various systems, even as some of
the software grew larger and more complex. One constant theme
was experimentation and reinvention; a wide variety of systems
evolved over the ten-year period. It’s safe to say that some of the
abrupt corner-turns, particularly during the dot-com frenzy,
necessitated a constant stream of rapid redevelopment and change.

This paper will cover several phases of the work. It began around
1992 with GroupKit, a university-developed Tcl extension used
for rapid prototyping of collaborative interfaces and
experimentation with underlying software architectures. A follow-
on application in 1996, TeamRooms, was a more robust desktop
collaborative environment combining a range of tools.
TeamRooms was later spun-off into a company I founded,
TeamWave Software Ltd., and the software was further developed
as TeamWave Workplace. TeamWave moved to web-browser-
based products in 1999, applying the technology to virtual
communities, music sharing, e-learning, and web
conferencing/meetings.

The company was eventually acquired in late 2000; our use of Tcl
was a key issue during the technical due diligence phase leading
up to the acquisition. Throughout this paper, I’ll highlight many of
the issues that we used to pitch Tcl as a significant strength, rather
than a liability for the acquirer.

While some of the issues are familiar (e.g. rapid development
time, easy integration), others are less obvious, such as arguments
surrounding performance and scalability. These can depend
heavily on Tcl development practices, and effectively using Tcl in
support of sound software engineering practices. While best
practices aren’t always obvious, and there are some issues with

practical use in organizations, all the benefits certainly made it an
excellent choice at every phase of our development work.

1.1. Experience papers
Earlier years of this conference have brought a variety of
experience papers, most notably Don Libes’ paper reflecting on
seven years of evolution of the Expect extension [5], and Tom
Phelps’ paper on building the TkMan application [9].

Through these and other papers, we’ve learned practical
techniques for common problems, more obscure issues that creep
up during longer-term deployment, and examined the effect of
aesthetic language issues and design choices. Through war stories
and experiences, we can avoid pitfalls and discover new practices
to aid in our own development, and understand better some of the
factors affecting core language evolution.

This paper differs somewhat from previous experience papers. It
covers a wider range of systems, examines software engineering
practices with Tcl as code and teams start to grow, and addresses
some of the “soft” concerns such as organizational pressures as
they impact the choice of development tools and practices.

1.2. Collaborative Systems
The application domain I’ve been working in is collaborative
systems, a rather broad area that covers a range of things from
chat systems, to email, to bulletin boards, to video conferencing
and more. Other names often applied to the same domain include
“groupware” and “conferencing”.

These systems are shared by several people over a network, and
tend to be classified according to whether they allow people to
work together at the same time such as in a meeting (“real-time”
or “synchronous”) or if they are to support people working
together over a longer period of time at different times
(“asynchronous”).

Most of my work has been in more visually oriented systems,
often focused around visual surfaces like whiteboards or slide
shows. These tend to be highly interactive areas, where gestures,
annotations, object manipulation, and other small actions must be
quickly communicated to everyone sharing the system.

Developing these systems is interesting, because not only do they
involve many complex technical issues (network communications,
data storage, security, etc.) but because people are actually using
these tools to try to communicate with each other. That means that
user interfaces (and even social context) become very important.

It is no surprise then that collaborative systems share many
characteristics with other computational, client-server, networked
or user interface applications commonly developed with Tcl/Tk.

2. GroupKit: Prototyping Interfaces
GroupKit [10,13] was an open source Tcl/Tk extension developed
at the University of Calgary, providing common collaboration
facilities to aid in the prototyping and evaluation of groupware
applications and architectures. It was used by many students and
researchers at various institutions. Figure 1 shows some examples
of the types of tools prototyped with GroupKit.

GroupKit had actually started life as a C++ class library, based on
the InterViews GUI library. The move to Tcl/Tk (precipitated by
some eager experimentation immediately after the first release of
Tcl-DP) took about one month and yielded some benefits over the
C++ version by now very familiar to most Tcl/Tk users:

• The easier learning curve of Tcl/Tk made the system
accessible to more people; ramp-up time for those unfamiliar
with Tcl was measured in hours or days, not weeks, making
GroupKit accessible to coursework for students.

• The rich Tk widget set, especially the canvas and text
widgets, enabled more sophisticated interfaces to be
prototyped more easily and quickly.

• Code size, development time, and debugging time shrunk by
an order of magnitude for typical applications, which was
critical for the target audience.

• We were later able to develop Windows and Macintosh
ports of GroupKit, supplementing the original Unix version.

As a result, the system gained significantly more widespread use
in the research community, more interesting systems were built,
we could add many more features, make it flexible enough for a
wider range of uses, and do more of our own experimentation.

In many ways, this was a good example of the traditional use of
Tcl/Tk, making prototypes and small applications, developed by
very small numbers of often-novice developers. Using Tcl/Tk
helped bring down the scale of larger problems. It let developers
think at a higher level about the problem, and reduce the amount
of code needed to express the solution. As a result, problems were
solvable more quickly and easily by individual developers.

Figure 1. Examples of interfaces developed with GroupKit.

3. TeamRooms: A Larger Application
TeamRooms [11], and later the commercial TeamWave
Workplace, was a full-fledged collaborative application, rather
than a prototyping environment. It provided members of a group a
set of electronic rooms where they could share work, both in real-
time and asynchronously. The rooms combined a variety of
different shared tools. Figure 2 shows an example.

These systems relied on a central server, along with a desktop
application that ran on each client’s machine. Both client and
server ran on Mac, Windows and several Unix platforms.
Internally, the systems were fairly standard Tcl/Tk applications. A
novel feature was that the client used a number of different Tcl
interpreters to juggle the different tools in the environment,
allowing new tools to be added, yet from a programmer’s point of
view appear isolated from the rest.

The application, though considerably larger and more complex
than earlier work in GroupKit, was still reasonably sized (<50k
loc), and was built primarily by 2-3 developers. Development
challenges primarily surrounded then-bleeding-edge features in
Tcl, such as the cross-platform versions of Tk and the core’s new
I/O model and socket support. Performance requirements dictated
a modest amount of spot recoding in C and other isolated
optimizations, all easily identified using standard profiling.

TeamWave Workplace was again typical of many more mature
Tcl/Tk applications, becoming more robust and full-featured with
each version, but still developed on a fairly small scale. The
relatively small code base and size of the developer team allowed
ad hoc development practices to suffice. The coding style (e.g.
documentation, naming conventions) was fairly loose, inter-
module dependencies were high, and testing was largely manual.

This looseness was conducive to the rapid changes that occurred,
especially in early versions of the commercial system, when many
new features were added to meet customer needs. But as we’ll see
soon, the ad hoc development practices started causing problems.

Figure 2. Example of TeamWave Workplace interface.

4. Moving to the Web
By late 1998 it became clear that the TeamWave application had
to be retargeted to run inside a web browser, rather than as a
double-clickable desktop application. For many of our target
customers in education and virtual communities, the need to
download software and run another application was too large a
barrier for new users, and an impediment to regular use.

While modest angel funding (by dot-com standards!) had allowed
us to grow our development team to 5-10 people, trying to do a
complete rewrite (e.g. as a conventional Java applet) was both too
large a project and too risky given the state of client-side Java at
the time. We wanted a solution that would preserve as much of
our code base as possible, and enable us to continue our rapid
development using Tcl if we could.

4.1. Proxy Tk
The solution we came up with involved development of a Tk
replacement that, rather than talking to the local UI toolkit,
communicated with a very small Java applet running in the
client’s browser. The client application using Tk, formerly
running as an application on the user’s desktop, migrated to a new
Tcl interpreter on the server machine.

The extension we developed, called Proxy Tk [12], let us continue
primary development in Tcl/Tk, isolate the considerable number
of Java issues in a tiny body of code, and run (from the user’s
perspective) download-free. Proxy Tk proved a fantastic success.

The core collaboration environment went through a number of
iterations once it hit the web version, supporting a diverse range
of uses from virtual community and music sharing, e-learning,
web presentations, online meetings, and more (see Figure 3 for a
few screenshots). Without the rapid development advantages that
Tcl afforded, it is clear we never could have explored these areas
with the size of team we had.

4.2. Site Management
The move to web-based systems also moved the product from a
model of supporting a single workgroup on a server to an
“application service provider” model, where we were hosting very
large numbers of virtual meeting rooms or classrooms for a large
number of different groups.

We therefore needed to develop a typical web site infrastructure,
supporting registering users and associated user management
tasks, creating and managing meeting rooms or courses, work
groups, meeting scheduling and emailed invitations, and more.

Early versions of this portion of the system were developed using
Apache and CGI, using the cgi.tcl library [4] as an aid. We later
moved to a more powerful infrastructure, using AOLserver. For
both variants, we kept a separate centralized Tcl process for
storing system wide data using Metakit [14], as well as interacting
with the virtual meeting room processes.

Again, this portion of the system went through considerable
change and evolution as we explored different applications, and
Tcl sped things up greatly. There weren’t many technical
obstacles here, as we used fairly standard web techniques. Figure 3. Images of some of TeamWave’s web-based systems.

4.3. Growing Pains
Both in the later versions of Workplace, and throughout the
different versions of the web-based systems, several cracks began
emerging in our ad hoc development practices. The problems
became exacerbated as we brought on new developers, and as the
code base grew (later versions of the web-based systems reached
approximately 90k loc Tcl, 35k loc C, and 10k loc Java).

Almost without exception, our new developers had no problem
picking up Tcl very quickly. One new hire, a previous junior
C/C++ programmer, tasked with learning Tcl and developing an
automated build system for our software we figured would take
two weeks, returned in two days with the completed version.
Another team member, without a formal computer science
background, was happily hacking out web scripts in no time.

Getting new code working reliably with our existing code proved
somewhat more difficult. Poor module boundaries made it hard to
find the needed calls to make, a problem exacerbated by spotty
documentation. A lack of established coding conventions soon led
to a plethora of variable and procedure naming styles, module
API’s, and more.

Not surprisingly, adding new features tended to break some of the
old code, leading to greatly increased manual testing time.
Increasingly, work fell into the pattern of “two steps forward, one
step back.” The pace of development slowed considerably.

This hardly came as a shock of course; we didn’t expect all of
Tcl’s rapid development features to give us maintenance-free
code, or to automatically solve all the problems of managing
growing software systems.

These problems did take longer to arise (since the code base in Tcl
was smaller than it would be in conventional languages), and as
we’ll see in the next section, Tcl itself made it easy to address
these problems.

5. Software Engineering with Tcl
As we’ve seen, Tcl is not immune to the problems faced in every
other language as programs and teams grow in size. Luckily,
standard “motherhood” approaches to these problems (e.g. [6,7]),
as well as more recent agile development approaches [1] also
happen to work just fine in Tcl. In some cases, Tcl may in fact be
particularly advantageous for implementing such solutions.

Tcl doesn’t force you to write clean, easy-to-maintain software,
but it doesn’t prevent it. This section will highlight a few of the
techniques we applied as we started encountering some of the
problems discussed earlier. Obviously, applying these techniques
in advance of encountering problems or in their early stages is
greatly preferable to trying to apply them while in the throws of a
full-blown crisis!

5.1. Coding style
There are lots of good reasons for having a uniform low-level
coding style, including such things as documentation standards,
naming schemes for variables, procedures, modules, etc., spacing,
tabs and bracketing standards, and all the other minutiae of
syntax. Developers can think about the problem at hand rather

than formatting, find what they’re looking for easier, and make all
code truly a group resource, avoiding the “my code, your code”
problems.

Luckily, Tcl itself offers a fantastic example of a code base that is
superbly engineered and follows exacting coding conventions.
There are excellent guides for writing both C code [8] and Tcl
script libraries [3]. Use them directly or adapt them to your own
needs.

Adopting and enforcing a uniform coding style was a no-brainer,
which two long weeks of RSI-inducing monotony suggested
should have been done much earlier.

5.2. Modularity
Good module design is another important factor as programs grow
larger. While in small prototypes it is reasonable and even
advantageous to call routines from all over the place, manipulate
global data and so on, the poor coupling and cohesion inherent in
this approach clearly doesn’t scale.

Namespaces and packages, as well as object systems such as
[incr Tcl], offer numerous aids to help build Tcl modules. We
chose to implement a scheme patterned after Tcl core commands
such as ‘string’ or ‘file’. Each module, in its own file, implements
a single top-level Tcl command. The first argument to the
command is always a subcommand specifying the actual
operation to invoke, followed by needed arguments. While the
top-level command will invoke other procedures within the
module to complete the command, all callers outside the module
only go through the single public interface. All module data is
stored in an array having the same name as the module.

This gives us the expected benefits: a clear, well-defined
interface, API documentation easily visible at the top of the file, a
single entry point to the entire module, easy inspection of data, no
naming collisions, and more.

Structuring modules in this way also made it easy to move an
entire code module into C, when required for performance or
other reasons, without impacting any other code in the system.
Provided the C version of the command implemented the same
API, everything continued to work. This removed many obstacles
as the system evolved.

5.3. Automated testing
It is hardly a secret that Tcl is a popular environment for writing
automated tests. Large companies like Motorola, Cisco, Oracle
and Sybase (e.g. [2]) have millions of lines of Tcl test scripts. Tcl
is also the basis for testing frameworks like DejaGnu, and the
“tcltest” framework bundled with Tcl itself, which we used.

As agile development enthusiasts will attest, automated tests can
speed up code development, and certainly catch regression errors
that are introduced as changes are made to existing code. We
didn’t make as much use of automated tests as we should have,
except for key modules where data integrity was critical. This cost
us dearly in terms of re-introduced bugs and exceedingly
laborious manual test plans that had to be developed and
frequently run through.

Tcl makes testing easier than in other languages, and well-defined
modules are very amenable to automated unit tests. We also used
it to write broader functional tests that interacted with web pages
in our applications. Having the test cases and code being written
in the same language is also a tremendous aid to developers, who
have one less thing to learn, and therefore one less excuse not to
write test cases.

5.4. Build scripts
Automated build scripts, which completely check out (you do use
version control, right?) and build your software from scratch (and
run through all your automated test cases!), are also a standard
technique for reducing errors. Particularly when automatically run
every night, they quickly weed out errors introduced in the code,
and ensure a reliable build.

Again, because Tcl is exceptionally good for writing scripts that
control other programs, it is ideal for build scripts. As with test
cases, because these scripts are written using the same tool as the
main code, any member of the team can extend, debug or fix the
build scripts as needed.

5.5. Best practices
As Tcl applications grow, it is gratifying to know that traditional
software engineering techniques will help manage that growth,
and perhaps even be easier to apply than in many conventional
languages. Later sections will also show some other benefits of
these techniques.

It is clear though that such management does require a dedicated
effort, and that while Tcl will make such a task easier, it does not
come free. Applying techniques like those described here, along
with code and architecture reviews, preparing design documents,
test plans, and other best practices, are critical as programs and
teams grow.

An obvious corollary to this extra process is that the 5-10 times
developer efficiency increase afforded by a scripting language like
Tcl over conventional languages cannot be sustained as program
and team size increases. The smaller code size of Tcl programs
does however mean that it will take a lot longer before programs
become “large”, and developer productivity begins hitting that
wall. Of course, extra process must be added for larger programs
developed in other languages too, slowing them down as well.

Though we did not measure it, I’d estimate overall efficiency was
still at least 3-4 times higher with Tcl, across the entire team. Of
course, without the extra process, efficiency would have quickly
approached zero. Bugs would have continued to be introduced,
senior developers would have their entire time occupied with
junior developers lost in the code, and so on.

6. Tcl in the Hot Seat
In mid-2000, we began searching for a company to acquire
TeamWave. We had discussions with a number of companies, and
eventually were acquired in late 2000 by a Boston company now
called Sonexis, a developer of audio conferencing technologies
complementary to our own data conferencing software. At that
point, they were a fairly typical smaller (~200 people) software

company, with a very Windows/C++/COM/ASP based
development culture.

Throughout technical due diligence, both leading up to the
acquisition by Sonexis, and in our discussions with other
companies, our use of Tcl as a primary development language was
certainly one of the big questions everyone had. It fell to us to
communicate why Tcl was an asset to us, and not a liability. We
also needed to explain how our systems would be able to easily
and effectively integrate into other existing systems based on very
different technologies.

The question of using Tcl was only one of many questions of
course; the underlying issues are always whether the team and
technology would be both a good fit and enhance existing assets.
Taken in that light, this wasn’t so much a “defense” of Tcl, as
communicating the positive aspects of our team, tools,
technologies and development practices. The message was that
Tcl was chosen to be part of our entire development effort
because of the concrete advantages it offered.

I’ll describe both some of the obvious strengths of Tcl and our
refutations to some common technical and non-technical
misconceptions that arise, and then go into considerable detail
regarding four of the key technical advantages we offered:
integration, configurability, reliability, and performance and
scalability.

While some aspects of these discussions are particular to our
technology, many of these issues are both common and generally
applicable to many systems.

6.1. Obvious Tcl Strengths
There were a few clear advantages developing our systems in Tcl
gave us that are quite familiar to most people, and require little
discussion here.

Higher level programming. As a scripting language, Tcl programs
require less code, less housekeeping, and don’t have the same
edit-compile-debug cycle as conventional languages. It is
therefore possible to attack development projects using Tcl with
less people or time. This was easily demonstrated by looking at
what our application did, compared with the volume of code and
the amount of time and number of people we’d needed to develop
it. Similarly, walking through some of the bits such as user
interface and networking that are more complex in other
environments was a convincing demonstration.

Cross platform. For various organizations, the ability to move
between different Unix variants, or to move from Unix to
Windows was important. Versions of Workplace had been fully
cross-platform, and we’d done experimental ports of the web-
based products to Windows. Again, demonstrating what we had
and explaining the small amount of changes required was
important here.

Easy licensing. Some people we had discussions with were happy
that Tcl’s open source licensing made distribution both cost free
and hassle free. In most cases, this becomes just one less thing to
have to deal with.

6.2. Common Misconceptions
Some common myths about Tcl were also fairly easy to deal with.
With all of these, actual demonstration rather than theoretical
arguments was key.

Tcl is unstructured. As with any language, Tcl certainly can be
unstructured. A brief skim through our code, rigorously structured
and coded according to strict style guidelines, was more than
sufficient to prove it doesn’t have to be. The related issue is that
Tcl is only good for small programs; again, we were able to
demonstrate with our system that that wasn’t the case.

Tcl is hard to hire for. It’s not that common to find Tcl on a
resume. Our argument was simply that most competent
developers could pick Tcl up very quickly. We explained the
backgrounds and learning curves for our own developers, and did
a short walkthrough of both some simple and more complex code,
highlighting the similarities with other languages.

Tcl is unsupported. This came up infrequently, and was more
related to issues of how mainstream was it rather than actual
support. On that front, we could quickly point to large companies
like AOL, NBC, Cisco, Motorola and many others. On the actual
support front, the open code base, availability of consultants and
evidence of the active Tcl developer community, coupled with
poor support experiences with many proprietary tools, were
convincing enough.

7. Advantages for Larger Systems
This section describes four key areas that received significant
attention during our various discussions: integration,
configurability, reliability, and performance and scalability. A
common thread is that these are all significant issues in
developing larger systems.

7.1. Integration
Integration is a critical issue when incorporating any new
technology into an existing product. But integration is also an
issue in terms of accessing code libraries or other facilities not
built into the language. For both these cases, it is not surprising
that Tcl’s recognized strength as a “glue” language was a strong
asset.

Platform support. Our web applications were hosted on Unix; the
ability to easily port to Windows (or other Unix variants) removed
an obvious obstacle to integrating with existing code that was
running on Windows.

Library integration. Obviously, not every possible feature is built
into any programming language; Tcl in particular has tended to
keep many features out of the core language, leaving them to be
provided as extensions. As well, most third party libraries will
have bindings for C/C++ and not Tcl. This inevitably leads to
“but Tcl doesn’t have feature X” arguments.

The ability to call C/C++ code from Tcl is the obvious response to
these issues. We already relied on several extensions, as well as a
body of our own C code accessed with Tcl commands. Tcl
handles this noticeably better than most other languages, and this
ease is readily demonstrated.

COM. Several of the companies we talked with had a large body
of code that used COM for internal communications, and it was
expected that we would want to integrate at that level. Despite Tcl
not having built in COM support, we were able to demonstrate
how it could work with extensions (e.g. TCOM). We already used
TCOM in one small piece of our system, to automate some
document processing operations with Word and Excel. Most
programmers used to calling COM from C++ should be impressed
how much easier it is to do from Tcl!

Web services API’s. Another common approach to integration
between separate components is through some sort of network
API, usually a web-based protocol, either simple CGI or
something higher level like SOAP or XMLRPC. We’d in fact
used this approach in the past to do some loose integration with
some of our customers. Again, Tcl provided us with very
compelling solutions. On the client side, the ‘http’ package
provides a simple way to call a web-based API. The ease of
embedding TclHttpd (or minimalist homegrown variants) and
customizing them to provide an API, easily handles the server
side. Today, there are also Tcl extensions that will ease supporting
protocols such as SOAP.

This HTTP API was the approach taken when we eventually did
the system integration between the audio and data conferencing
systems, and it worked very smoothly. Tcl, as a string-based
command language, is readily adept at implementing all sorts of
network API’s.

System structure. System structure obviously plays a large role in
integration. Well-defined API’s are easier to provide if the code is
structured into clean modules. Localizing design decisions in
modules reduces the impact of changing aspects of the system.
For example, system-wide database calls were isolated in a few
modules, rather than spread throughout the code, making database
swapping a modest endeavor. Clearly, such system integrations
need to be not only possible, but also achievable in reasonable
time frames.

7.2. Configurability
Larger systems often need to be highly configurable, whether
deploying different features sets for different customers or product
versions, adding custom extensions for certain users (perhaps for
additional integration needs), user interface branding, etc. Again,
Tcl shines in this area.

Configuration language. It is no surprise that using Tcl as a
configuration and extension language for the system can be a big
win. Not only does this save the code to write a new parser, but
also provides a more flexible configuration environment.

Dynamic vs. static. Because Tcl scripts are interpreted at run-time
rather than statically compiled, making appearance changes,
enabling or disabling features, and other such changes are
straightforward to make. We often found it useful to isolate these
sorts of decisions (e.g. appearance settings, or feature activation
flags) in separate modules to simplify program structure.

Again, we had used this approach to implement simple branding
and feature selection for previous customers. And because our
application had gone through many iterations, we had more than a

few aspects of the system that could be tweaked with run-time
parameters. (It is possible to go too far of course, and several
times we chose to go back and remove some of the older choices,
which were adding too many cases to the code).

7.3. Reliability
System reliability, both robustness and fault tolerance, is critical
for larger systems. We engineered reliability into our Tcl
applications using the following techniques.

AOLserver. We relied on AOLserver for our central web server.
Suffice it to say that it is pretty easy to make the case for
AOLserver’s reliability, given they day-to-day production use
within AOL.

Script application features. Scripts don’t core dump, unlike C
code. Most day-to-day coding changes, such as fixing bugs and
adding features were isolated in the Tcl script layers, not in the C
code modules, which provided a lower level “engine” that stayed
fairly stable. Any programming errors in the Tcl side were easily
caught and logged so they can be fixed, while the program
continues running. Regularly modifying C code is likely to
introduce errors that can produce large side effects or system
crashes. The more higher level code, the easier it is to prevent
crashes in the face of errors.

Debugging and introspection. Various forms of logging,
interactive debugging and introspection of system state are all
significantly easier and more dynamic in scripting languages like
Tcl than in more static languages, making it easier to find and
eliminate errors.

Multiple process model. We divided our application into several
different processes (e.g. web server, central database manager,
one process per meeting room). Tcl makes this easy because of
features like exec, and the ease of communicating between the
processes using sockets, pipes or other IPC mechanisms. Splitting
the system into multiple processes ensures a fault in one doesn’t
take down the system. Processes monitor each other and are
restarted as needed. Contrast this with systems that make sharing
information between components harder, necessitating a single
process model (or a complex and error-prone threaded solution)
where a single error can be fatal.

Development processes. Of course, reliable development
processes such as automated builds, tests, code reviews, etc. are
also critical to ensure system reliability, in any language!

7.4. Performance and scalability
Performance can be a general issue with large systems, but
because we were developing a server application that needed to
support large numbers of users, the scalability of the system was a
very important and difficult issue.

This was complicated because with the Proxy Tk strategy we
implemented, much of our client code, only ever designed to run
on a single user’s machine by itself, was now being run on the
server, one instance per logged in user. Suffice it to say that it’s a
good thing we’d begun tackling this problem long before we
started due diligence discussions!

AOLserver. Again, “standing on the shoulders of giants” gave us a
great boost of credibility right off the top when it came to
scalability. Not only were we using the same web server as was
used to run one of the highest traffic sites in the world, but many
of the same techniques and technologies (e.g. Tcl) that made
AOLserver work so well were embedded in other parts of our
system as well.

Monitoring performance. The key to any performance or
scalability improvement is profiling and other measurement. This
can tend to be a laborious exercise, and Tcl is probably no better
or worse than any other language in this regard (though not
having to recompile when we wanted to add more telemetry
information was nice). Some of our coding style choices (e.g.
single entry point for each module) did make it somewhat easier
to add profiling information when needed.

When we did find areas that needed improvement (either in terms
of the time that an operation took, or memory use by a part of the
code), it was just a matter of slogging through and coming up with
better ways to do things.

Scalability test harness. The other aspect of profiling, along with
measurement in the server, was generating the needed load on the
server. We developed a scalability harness (in Tcl) that simulated
the behaviors of large number of Proxy Tk clients connecting to
and banging on the server. Modifying the behavior of these clients
was easy, because the protocol is simple strings sent over the
network. Again, writing the scalability harness in Tcl rather than
using another solution meant that it was one less tool our
developers needed to learn.

Migration to C. One of the common solutions was of course
migrating very time critical Tcl code into C. Over time, we moved
a substantial portion of our “core collaboration engine” code
(networking, data sharing) into C, leaving almost all application
features in Tcl. Our coding style (structuring each module’s public
interface as a single command) again made this an obvious and
low impact transition to make when required, and demonstrated
that future performance improvements could be made in the same
manner.

Multiple processes. The multiple process model helped us in a
number of ways in regards to scalability. In our system, we tended
to have multiple meeting rooms open at the same time, each
having perhaps 10-20 users in them. Each meeting room had its
own process, using the Tcl event loop to arbitrate between the 10-
20 attached users with very little overhead.

Contrast this with a typical threaded solution with one thread per
user, and the operating system overhead of managing the threads
would quickly grow as the number of users and meetings
increased). Relying on a non-threaded solution also of course
helped simplify the solution and increase overall reliability.

Splitting the application into multiple processes also makes it
trivial to scale the application to take advantage of multi-
processor servers. Threading solutions of course would also have
this same benefit. Unlike with threading, because the different
processes communicated with each other via network sockets, it
would also be possible (albeit with some code changes) to spread
the processes over several different machines.

Excessive memory use is unfortunately one large drawback of
scripting languages like Tcl, and our application not only used
huge amounts of memory, but our code also tended to leak lots of
memory over time. Using the multiple process model meant we
could simply shut down the meeting room process when a
meeting was completed and free up all that memory. Using a
long-running process, though certainly possible, would have
generated an endless amount of work.

Results. Our application was at one point measured at handling
approximately 1000 simultaneous users, at typical activity levels,
on a single very modest server, with reasonable load and low
latency of operations. That’s about 2500 separate Tcl interpreters!

While it did take us a considerable amount of measurement, tool
development, tuning, recoding, and optimization, it does
demonstrate that using Tcl as a development language does not
prevent building high performing scalable systems.

8. Looking Back, Looking Forward
This section provides some general thoughts, both on our choice
of Tcl leading up to and beyond TeamWave’s acquisition, some
potential issues that may hinder Tcl adoption, and some overall
conclusions.

8.1. Why Tcl worked for us
It’s clear that tackling the range of systems described here, from
early academic prototypes through several robust and scalable
commercial systems, would not have been feasible without Tcl. It
provided opportunities to take this work significantly farther on
much fewer resources than would have been required with more
conventional development tools and technologies.

While in the early days, the natural fit of Tcl/Tk for prototyping
work and small applications made it an obvious choice, this work
suggests that Tcl also scales up well to “real” applications, when
used appropriately. Development process definitely counts.

8.2. Potential Roadblocks
Tcl isn’t the clear or easy choice for everything. It is still not a
comfortable, mainstream choice (and probably never will be).

It’s true that we did prove our case for using Tcl, and had very
positive experiences as our team and technology merged into the
acquiring company, and as new development continued. However,
even many months later, there continued to be some degree of
underlying suspicion and anti-Tcl bias.

It’s also true that pitching Tcl for a new project would likely be
substantially harder than in our case, where we were talking about
adopting an existing body of code. Many of our arguments were
convincing because we could point first-hand to the actual
working system. Brand new systems would require arguing via
anecdotes and second hand examples, which may be equally
valid, but are less compelling.

Our experiences suggest that beyond general suspicion, there are a
few potential roadblocks that could continue to impact future Tcl
adoption within larger corporate applications, particularly in the
area of web applications.

Interactive web applications. Unfortunately, for applications like
ours that require very interactive web interfaces (more than is
possible with forms or Javascript), there are few choices available.
While the Tcl plugin still exists, and may be appropriate for some
users, for mainstream use the download is an obstacle. The Proxy
Tk solution we built was a good solution, but is proprietary and
hence unavailable for general use. It would be nice to see new
options along those lines available for these types of systems.

Web site development. For conventional web programming, Perl
and PHP are still much more prevalent; Apache modules for using
Tcl do not appear as popular or refined, and Tcl is not commonly
used under IIS. TclHttpd does serve an important and distinctive
niche, but it is not a mainstream solution. AOLserver is a fantastic
product, with high credibility, but the latest versions are now
available for Unix only. The removal of Windows support is a
severe blow against corporate use, even if the main advantage was
merely to say “yes, it runs on Windows if we ever need it to.”

The need for best practices. There is a tremendous volume of
invaluable information about Tcl, in FAQ’s, Tcl-URL, the Wiki
and many other excellent volunteer maintained resources.

One problem I see though is that there is not an easy-to-use,
central resource truly focused on best tools and best practices,
emphasizing a small set of mainstream tools and techniques used
by a large set of developers. It is easy to find there are 23 different
OO extensions; it is harder to learn that [incr Tcl] is probably the
right choice if you want a stable and mature extension to add
conventional OO structures to your application.

Without this, it becomes more important that a project using Tcl
have a very strong champion or guru to stay aware of the current
state of the language, monitor newsgroup announcements, know
where the different resources are located, etc. Without a good
focused resource, you almost have to become fully immersed in
the Tcl community to become proficient. This is one factor that I
think may be significantly hindering Tcl language adoption.

8.3. Summary
Certainly in my first experiments with Tcl, Tk, and Tcl-DP, I’d
have never predicted that I’d be able to use the same basic set of
tools to develop large, robust, production-quality collaborative
applications supporting hundreds of users on a server.

For my work, Tcl has proven to be amazingly versatile. It lowered
barriers to entry for novice programmers, and made it possible for
individuals or small groups to attack much larger problems than
they were able to before. Yet the same tool was also powerful
enough to handle the more specialized needs of teams of
professional developers on significantly larger and more complex
projects. That is an amazing range for one tool.

It was good to find that with a bit of know-how, the mistakes that
were encountered scaling up to larger applications are no different
with Tcl than with any other language. Luckily, standard software
engineering solutions can be applied fabulously well in Tcl.

Combining sensible software development practices with the huge
productivity gains coming from a rapid development tool made
using Tcl for our larger applications a very solid choice.

Acknowledgements
This work draws on the experiences of dozens of developers who
have been involved in these projects over the years. Ted O’Grady
brought in many of the key ideas and was instrumental in their
implementation. Other key contributors include Brad Johnson,
Raymond Yip, and Leo Pelland. This work has also benefited
greatly from discussions with Jean-Claude Wippler. Ted
O’Grady, Raymond Yip, and Larry Virden provided helpful
comments on early drafts of this paper.

References
[1] Cockburn, Alistair. Agile Software Development. Addison-

Wesley, 2001.

[2] Grady, Steven, Madhusudan, G.S. and Sugiyama, Marc.
QuaSR: A Large-Scale Automated, Distributed Testing
Environment. Proceedings of the 1996 Tcl/Tk Workshop.
Monterey, CA. 1996.

[3] Johnson, Ray. Tcl Style Guide. http://www.tcl.tk/doc/.
1997.

[4] Libes, Don. Writing CGI scripts in Tcl. Proceedings of the
1996 Tcl/Tk Workshop. Monterey, CA. 1996.

[5] Libes, Don. Writing a Tcl Extension in Only Seven Years.
Proceedings of the 1997 Tcl/Tk Workshop. Boston, MA.
1997.

[6] McCarthy, Jim. Dynamics of Software Development.
Microsoft Press, 1995.

[7] McConnell, Steve. Code Complete: A Practical Handbook
of Software Construction. Microsoft Press, 1993.

[8] Ousterhout, John. Tcl/Tk Engineering Manual.
http://www.tcl.tk/doc/. 1994.

[9] Phelps, Thomas A. Two Years with TkMan: Lessons and
Innovations. Proceedings of the 1995 Tcl/Tk Workshop.
Toronto, Canada. 1995.

[10] Roseman, Mark. Tcl/Tk as a Basis for Groupware.
Proceedings of the 1993 Tcl/Tk Workshop. Berkeley, CA.
1993.

[11] Roseman, Mark. Managing Complexity in TeamRooms, a
Tcl-Based Internet Groupware Application. Proceedings of
the 1996 Tcl/Tk Workshop. Monterey, CA. 1996.

[12] Roseman, Mark. Proxy Tk: A Java applet user interface
toolkit for Tcl. Proceedings of the 2000 Tcl/Tk Conference.
Austin, TX. 2000.

[13] Roseman, Mark and Greenberg, Saul. Building Groupware
with GroupKit. In Harrison, Mark (ed). Tcl/Tk Tools.
O’Reilly. 1997.

[14] Wippler, Jean-Claude. MetaKit.
http://www.equi4.com/metakit/

