
CriTcl - Beyond Stubs and Compilers
Steve Landers
Digital Smarties

steve@digital-smarties.com

Jean-Claude Wippler
Equi4 Software

jcw@equi4.com

1 Introduction

Scripting can only get you so far. Often the last 5-10% of an
application needs to be compiled, for a number of reasons,
including

• performance
• to hide proprietary features (such as licensing)
• custom features that can't be implemented in Tcl
• the use of compiled extensions

Fortunately, it is relatively easy to add C extensions to Tcl,
either by building custom interpreters or dynamically
loadable extensions. But it is still a complex issue - not
only does one have to deal with tools such as autoconf,
make, etc. - but it also means having a development
environment configured with Tcl/Tk header files and "stub
libraries". The conceptual difference between "writing a bit
of C code" and having an extension which is actually
callable from a Tcl script can be daunting. Worse, the Tcl
build environment is somewhat foreign to those building
on a Windows platform (TEA1 is not everyone’s cup of tea).
Yes, "real programmers" will point out that this is what it
takes to do "true" programming. But for many who are used
to the productivity of Tcl it can easily become a frustrating
and time-wasting exercise.

This paper describes CriTcl - which stands for "Compiled
Runtime In Tcl" - a tool designed to address these issues.
CriTcl allows C code to be embedded in Tcl scripts,
(transparently) compiled and called like any Tcl procedure.

CriTcl also takes care of many of the details of building
compiled extensions, hiding issues such as including Tcl
headers, stubs support and creating Tcl commands for C
functions - even setting up fully TIP 552 compliant
packages in a directory, with a cross-platform pkgIndex.tcl
ready to go.

2 A Brief History of CriTcl

CriTcl started life as an experiment by Jean-Claude Wippler
and was a self-contained Tcl package to build C code into a
Tcl/Tk extension on the fly. It was somewhat inspired by
Brian Ingerson's Inline for Perl[3], but is considerably more
lightweight.

1 Tcl Extension Architecture [1]
2 TIP #55 Package format for Tcl extensions - specifies the
contents of a binary distribution of a Tcl package, suitable
for automated installation into an existing Tcl installation
[2]

The original idea was to wrap C code into something that
could then be compiled into a Tcl extension, (if necessary)
compile it using gcc when the end user runs the application
and then dynamically load it into the running Tcl/Tk
interpreter. CriTcl used a MD5 checksum of the source code
to decide if it needed recompiling, so subsequent use was
almost instantaneous. Both the MD5 checksum for the
generated source and the compiled shared library are
cached.

The use of Tcl stubs, and the fact that CriTcl had all the
include files it needs to make compilation self-contained,
means that this was a pure Tcl package, which worked with
any (8.1 and up) installation of Tcl. Most importantly,
CriTcl did not care a bit where Tcl was installed, nor even
whether it was built as a static or as a dynamic executable.

So, in one sense, CriTcl (the library) permitted Tcl scripting
to go that last few percent where raw performance becomes
an issue.

The second chapter of the CriTcl story is CritLib[4] - a set
of Tcl extensions - and CritBind - a utility script that used
the CriTcl package to build a shared library out of the
CriTcl extensions.

This takes the CriTcl story another step further - now, the
developer could use CriTcl to build common libraries,
which are then available for deployment in environments
without a C compiler. CriTcl still required gcc - but at least
this is commonly available to developers. And it is
potentially only a small step to any C compiler with a
command line interface.

CritLib provided valuable experience in building common
compiled Tcl/Tk extensions. This includes blowfish, mathf,
md5c, TkHtml and zlib. But CritBind was still relatively
difficult to use, and so the third chapter of the CriTcl story
began.

CriTcl (the command) makes CriTcl trivially easy to use.
For convenience, it is deployed as a Starkit [5] (although it
can be unwrapped and used with a more traditional Tcl
interpreter). It can be run in one of three modes - a "compile
and run" mode (similar to the original CriTcl experiment); a
"build library" mode (similar to CritBind); and a "package"
mode.

It is this latest incarnation of CriTcl that will be discussed
in detail by this paper - with particular focus on the
package mode for generation of ready-to-run Tcl extensions
for multiple platforms.

3 CriTcl Overview

As mentioned, CriTcl allows C code to be embedded in Tcl
scripts, (transparently) compiled and called like any Tcl
procedure.

It provides procedures for:
• defining C functions that are callable as Tcl

procedures
• specifying header files and C command line

parameters
• injecting C code into the intermediate C program
• checking if CriTcl is available on the current

platform
• forcing a compile and checking whether it was

successful

All generated code and the MD5 checksums are collected in
a per-user/per-platform directory (~/.critcl/platform) -
which can be safely located on a shared volume.

CriTcl is self-contained:
• there are copies of all required Tcl and Tk header

files inside CriTcl, so there is no need for a
developer Tcl/Tk installation

• there is no need for pre-compiled Tcl/Tk stub
libraries to link against, since CriTcl has its own
stub glue included

For convenience, CriTcl is packaged as a Starkit - a single
file packaging of Tcl code and data - which can be
downloaded from the Starkit Distribution Archive [6] .

The following examples will demonstrate the use of CriTcl
in a number of situations.

3.1 Extending Tcl Scripts with C code

Consider the following Tcl script, which performs some
simple calculations and prints the time taken to perform
each one:

proc sum {a b} {
 return [expr {$a+$b}]
}
proc pow3 {a} {
 return [expr {$a*$a*$a}]
}

proc timeit {txt cmd} {
 set num 100
 set count 1000
 set run {}
 for {set n 0} {$n < 100} {incr n} {
 lappend run $cmd
 }
 set val [uplevel 1 [list time \

[join $run {; }] $count]]
 set tmp [lreplace $val 0 0 \

[expr {[lindex $val 0]/(1.0*$num)}]]
 puts "$txt: [lrange $tmp 0 1]"
}

set a 1 ; set b 2
timeit "Tcl noop" {}
timeit "Tcl expr" {expr {1+2}}

timeit "Tcl vars" {expr {$a+$b}}
timeit "Tcl sum " {sum 1 2}
timeit "Tcl expr" {expr {2*2*2}}
timeit "Tcl vars" {expr {$b*$b*$b}}
timeit "Tcl pow3" {pow3 2}

Note the sum and pow3 procedures that we will be timing.
The timeit procedure runs each test 100 times, invoking the
interpreter 1000 times to get an average value per iteration.

If we save the above script in a file time.tcl and run it using
a Tcl 8.4 interpreter on an Apple Mac iBook 500Mhz, it
gives the following:

$ tclkit time.tcl
Tcl noop: 0.01 microseconds
Tcl expr: 0.75 microseconds
Tcl vars: 1.8 microseconds
Tcl sum : 4.46 microseconds
Tcl expr: 1.08 microseconds
Tcl vars: 2.8 microseconds
Tcl pow3: 4.98 microseconds

Now, we can start adding some C code to the top of time.tcl
using CriTcl. We’ll define three C functions:

• noop - which demonstrates why scripted no-ops are
quicker than compiled ones :-)

• add - equivalent to the sum Tcl procedure
• cube - equivalent to the pow3 Tcl procedure

package require critcl

critcl::cproc noop {} void {}

critcl::cproc add {int x int y} int {
 return x + y;
}

critcl::cproc cube {int x} int {
 return x * x * x;
}

Note that the critcl::cproc procedure defines a C function,
and sets up the corresponding Tcl command. We can now
add the commands to invoke these to end of the time.tcl
script:

timeit " C noop" noop
timeit " C sum " {add 1 2}
timeit " C vars" {add $a $b}
timeit " C pow3" {cube 2}
timeit " C vars" {cube $b}

Running the new version of time.tcl using the CriTcl
Starkit gives the following results:

$ critcl time.tcl
Tcl noop: 0.02 microseconds
Tcl expr: 0.78 microseconds
Tcl vars: 1.86 microseconds
Tcl sum : 4.49 microseconds
Tcl expr: 0.97 microseconds
Tcl vars: 2.63 microseconds
Tcl pow3: 4.58 microseconds
 C noop: 2.96 microseconds
 C sum : 2.07 microseconds
 C vars: 3.22 microseconds
 C pow3: 1.94 microseconds
 C vars: 2.52 microseconds

When running this the first time, there is a pause for a few
seconds after the last of the Tcl test results is printed, while
the generated code for the C functions is compiled and the
corresponding shared library is cached. On subsequent runs
there is no discernible pause because CriTcl detects that the
source hasn’t changed and just loads the shared library.

This example demonstrates the ease with which C code can
be added to a Tcl script, and shows the corresponding speed
up.

3.2 Building Libraries

CriTcl can also be used to generate a dynamically loadable
shared library, so the code can be run on machines without
a C compiler present.

If we wanted to build a small shared library containing just
the above math functions, we could create a file mymath.tcl
containing the CriTcl declarations, and then build it using:

$ critcl -lib mymath.tcl
Source: mymath.tcl
Library: mymath.dylib

We are left with a mymath shared library (in this case a
MacOS X .dylib, but on Windows a .dll and on most other
Unices a .so) which we can invoke using:

$ tclkit
% load mymath.[info sharedlibextension]
% add 1 2
3
% cube 2
8

3.3 Building Packages

But shared libraries are much more convenient when
distributed using the Tcl package facility. Using this mode,
CriTcl will generate a Tcl package structure (including the
pkgIndex.tcl file). The structure is arranged so that the
results of invocations on different architectures are
accumulated in platform specific directories and when run,
the pkgIndex.tcl file loads the shared library for the current
platform. These package structures are useful for creating
cross-platform applications - such as Starkits that may be
run on several architectures.

So, let’s update our mymath.tcl with a “package provide”
command:

package require critcl
package provide mymath 1.0

critcl::cproc noop {} void {}

critcl::cproc add {int x int y} int {
 return x + y;
}

critcl::cproc cube {int x} int {
 return x * x * x;
}

and build the package using:

$ critcl -pkg mymath
Source: mymath.tcl
Library: mymath.dylib
Package: lib/mymath

(Note that the .tcl extension is optional on the CriTcl
command line).

Copying the lib/mymath directory to somewhere on Tcl’s
auto_path, or to the lib directory of a Starkit, will allow the
mymath package to be loaded as follows:

$ tclkit
% package require mymath
1.0
% add 1 2
3

As we have seen, CriTcl generates a lib/mymath directory
next to the mymath.tcl source. Looking inside this we see:

lib
`-- mymath
 |-- critcl.tcl
 |-- pkgIndex.tcl
 `-- Darwin-ppc
 |-- critcl.tcl
 `-- mymath.dylib

Firstly, note that there are two Tcl scripts - critcl.tcl and
pkgIndex.tcl. The first contains scripts used by the latter:

source [file join $dir critcl.tcl]
critcl::loadlib $dir. mymath 1.0

The critcl.tcl file is more complex - it provides dummy
definitions for each CriTcl procedure (in case they are
called from the other scripts) plus two key procedures:

• critcl::loadlib which is used by pkgIndex.tcl to
load the appropriate shared library and any Tcl files

• critcl::platform which generates a normalised
name for each platform (needed because the
contents of tcl_platform array are not always
consistent across different architectures)

Note also that there is a platform specific directory
containing the shared library, plus a small critcl.tcl script
that stores the values of certain CriTcl parameters from the
build process, in case they are referred to by the package Tcl
script.

As the package is built on multiple platforms, CriTcl will
add similar directories. For example, if we copy mymath.tcl
and the lib directory to a Linux platform and run CriTcl
again:

$ critcl -pkg mymath
Source: mymath.tcl
Library: mymath.so
Package: lib/mymath

CriTcl takes care to store the cached and intermediate files
in separate per-user/per-platform directories, so it would be
safe to have both the mymath source and the user’s home
directory on a shared network drive.

3.4 A More Complex Package

Writing packages using a self-contained Tcl script is one
thing, but what about more complex packages with external
source files?

As an example, we’ll look at making Eric Young's
implementation of Blowfish encryption library [7]
available as a Tcl package.

Firstly, we put the C source and headers for blowfish into a
separate directory blowfish_c:

$ ls blowfish_c
bf_cfb64.c bf_enc.c bf_locl.h
bf_pi.h bf_skey.c blowfish.h

Note that these files are unchanged from the original
distribution.

Now, we create the blowfish.tcl3 CriTcl script to create Tcl
commands that invoke the Blowfish library functionality.
We’ll also start to use some of the more advanced CriTcl
facilities.

Firstly, we need to get the CriTcl package, but we’ll also
check to see that compiling is supported by CriTcl on the
current platform:

package require critcl
if {![critcl::compiling]} {
 puts stderr "This package cannot \
 be compiled without \
 critcl enabled"
 exit 1
}

package provide blowfish 0.10

The critcl::compiling procedure returns 1 if CriTcl is able
to find a suitable compiler on the current system. There is a
companion procedure critcl::scripting which returns the
inverse of critcl::compiling. Why? Depending on what you
are doing it helps make some scripts (maybe even the one
above) more readable.

Now we declare the C sources and headers needed when
compiling blowfish:

namespace eval blowfish {

 critcl::cheaders blowfish_c/*.h
 critcl::csources blowfish_c/*.c

 critcl::ccode {
 #include "blowfish.h"
 }

critcl::cheaders lets CriTcl know that the specified files
will be required when compiling the package, and will need
to be copied to the CriTcl cache.

critcl::csources specifies files that need to be compiled by
CriTcl when the package is build.
3 Note that the full text of blowfish.tcl is shown in
Appendix 1

critcl::ccode is used to inject the specified C code into the
generated C source file. In this case, the code ensures that
the blowfish library declarations are included before
compiling any C functions.

Finally we create a C function to implement the blowfish
Tcl command (this has been abbreviated - for the full
listing see Appendix 1). We do this using the
critcl::ccommand procedure, which is similar to
critcl::cproc but at a lower level - it ties C code to an
objectified Tcl command (via the Tcl_CreateObjCommand
function) without any further wrapping:

namespace blowfish {
 ...
 critcl::ccommand blowfish \

{dummy ip objc objv} {
 int index, dlen, klen, count = 0;
 unsigned char *data, *key;
 Tcl_Obj *obj;
 ...
 Tcl_SetObjResult(ip, obj);
 return TCL_OK;
 }
}

And that’s it! We just need to compile and test - this time
on Linux:

$ critcl -pkg. blowfish
Source: blowfish.tcl
Library: blowfish.so
Package: lib/blowfish
$ tclkit
% lappend auto_path [pwd]/lib
/usr/local/bin/tclkit/lib/tcl8.4 \
/usr/local/bin/tclkit/lib \
/home/steve/blowfish/lib
% package require blowfish
0.10
% set plain "Hello world!"
% set key "this is a secret"
% set coded [blowfish::blowfish \

encode $plain $key]
% binary scan $coded H* secret
% puts "coded = $secret"
coded = 258d3a52bf61df2467bade73
% puts "clear = [blowfish::blowfish \

decode $coded $key]"
clear = Hello world!

We can build on additional platforms, accumulating the
contents of the lib directory as we go. This will give us a
lib directory like the following:

lib
`-- blowfish
 |-- critcl.tcl
 |-- pkgIndex.tcl
 |-- Darwin-ppc
 | |-- blowfish.dylib
 | `-- critcl.tcl
 |-- Linux-x86
 | |-- blowfish.so
 | `-- critcl.tcl
 `-- Solaris-sparc
 |-- blowfish.so
 `-- critcl.tcl

Note that there are other tools that allow you to build
interfaces between Tcl and external libraries, in particular,
the SWIG - Simplified Wrapper and Interface Generator [8].

SWIG provides a greater level of automation than CriTcl.
When using SWIG the developer prepares a small interface
file that specifies what functions are to be wrapped. This is
used by SWIG to generate the “glue” between an external
library and Tcl - the equivalent of the critcl::ccommand is
generated for you. On the other hand CriTcl is significantly
easier to deploy, and generates a package structure ready to
use.

3.5 A Tk Package

Building a Tk extension using CriTcl is slightly more
complex.

Consider the Tkspline package by John Ellson - part of the
Graphviz software [9] . Tkspline provides an additional line
smoothing method for the Tk canvas widget, and is
typically used in conjunction with Tcldot - the graphviz
package for drawing directed graphs on a canvas . As
distributed, Tkspline is built as part of the Graphviz build
system, which is large and complex. By extracting
Tkspline and building it using CriTcl it becomes feasible
to move it to platforms not supported by Graphviz
(Windows, for example) and makes support much easier.

So, we’ll start constructing Tkspline.tcl (the capitalisation
was necessary to force the CriTcl generated package to have
the same name as the original Tkspline package). Here some
of the details will be omitted, but the full text of the script
is shown in Appendix 2:

package require critcl
package provide Tkspline 0.4.1

critcl::tk

set tcl_prefix [file normalize ~/src/tcl]
set tk_prefix [file normalize ~/src/tk]

critcl::cheaders \
 -I$tk_prefix/generic -I$tk_prefix \
 -I$tcl_prefix/generic -I$tcl_prefix

The critcl::tk procedure tells CriTcl to include the Tk stubs
table setup in any generated code, plus add tk.h to the list
of C headers files.

But Tkspline also requires some of the internal Tcl and Tk
header files (tclInt.h and tkInt.h) - so the next lines specify
the location of the Tcl and Tk source trees (it would be
preferably for CriTcl to have a means for these to be
specified on the command line, or even default to a location
like /usr/local/src/tcl):

set tcl_prefix [file normalize ~/src/tcl]
set tk_prefix [file normalize ~/src/tk]

critcl::cheaders \
 -I$tk_prefix/generic -I$tk_prefix \
 -I$tcl_prefix/generic -I$tcl_prefix

The last three lines add the specified Tcl and Tk directories

to the list of directories searched for included header files
(note that this is different from the use of critcl::cheaders
shown in the earlier examples). Whilst the use of internal
Tcl/Tk header files makes the building of Tkspline
potentially Tcl/Tk version specific - it is nevertheless much
simpler to deal with than the autoconf, makefiles and other
complexities of the standard Graphviz build environment.

Also note also that we are now starting to include build
information in the CriTcl script (more on the build features
later). But what about handling platform differences?
Fortunately, this is one of the (many) things that Tcl does
well ...

#
platform specific declarations
#
switch $tcl_platform(platform) {
 unix {
 switch $tcl_platform(os) {
 Darwin {
 set xinclude /usr/X11R6/include
 set xlib /usr/X11R6/lib
 }
 default {
 set xinclude /usr/X11R6/lib
 set xlib $xinclude
 }
 }
 critcl::cheaders -I$xinclude
 critcl::clibraries -L$xlib -lX11
 }
 windows {
 critcl::cheaders -DWIN32 \

 -I$tk_prefix/win \
 -I$tk_prefix/xlib

 }
 default {
 puts stderr "tkspline hasn't been \

 ported to \
$tcl_platform(platform)"

 exit 1
 }
}

The only new CriTcl procedure is the critcl::clibraries -
this adds the specified commands to the C compiler
command line (in this case, ensuring that the X11 runtime
library is resolved when building the package shared
library).

And finally, we include the original Tkspline C code,
arranging for the original Tkspline_Init function to be
called:

critcl::ccode {
 #define Tkspline_Init ns_Tkspline_Init
 #include "tkspline.c"
}

critcl::cinit {
 Tk_CreateSmoothMethod(ip,
 &splineSmoothMethod);
}

The first line in the critcl::ccode invocation is a small trick
to make the Tkspline C code expect the same shared library
initialisation routine as that generated by CriTcl. After

that, we just include the Tkspline code unchanged.
The critcl::cinit procedure injects code into the shared
library initialisation function - in this case we want to add
Tkspline as a canvas smoothing method.

So now, all that is left is compiling in the usual way:

$ critcl -pkg. Tkspline.tcl
Source: Tkspline.tcl
Library: Tkspline.so
Package: lib/Tkspline

4 Advanced Features

The previous example showed how we can use standard Tcl
features along with CriTcl to add simple build information
to a script. But CriTcl allows you to go further - for
example, testing for compiler or platform features, or
checking for a failed compile.

4.1 Checking C Code

With more complicated extensions - especially Tk
extensions - it is often necessary to check for platform
specific features.

For example, the busy widget has been extracted from
George Howlett’s BLT library [10] and built as a separate
stubs-enabled package using CriTcl. Here is a code
fragment from busy.tcl:

if {[critcl::check "#include <limits.h>"]}{
 critcl::cheaders -DHAVE_LIMITS_H
}

The critcl::check procedure invokes the C compiler on the
supplied C code, and returns true if the code compiles
without errors. In this case, we are just testing for the
existence of the limits.h header file.

Using the C compiler in this way is perhaps less efficient
that the more traditional approaches (such as autoconf). But
it does have some key advantages - primarily simplicity
and familiarity. Knowing C does not imply a knowledge of
any particular compiler tool chain, especially as more
people come to Tcl from the Windows and Mac worlds.

4.2 Fallback to Tcl

Now that using C is less daunting for the average Tcl
programmer, “plug-in replacement by C code” becomes a
valid strategy. But sometimes we can’t use a compiled
version on a given platform - e.g. if there is no compiler
available on the platform, or if the C code uses features that
are not portable. In this case it is important to be able to
fall back to a pure-Tcl implementation - even if it is slower,
or perhaps missing some features. The aim is to always end
up with some working code, even if that code is nothing
more than a clearly expressed failure explanation.

To see how this is done, let’s look again at the first
example, and extended the mymath example so that it will
fall back to a Tcl implementation if a C compiler isn’t
available, or if the compile fails for any reason:

package provide mymath 1.0
package require critcl

proc fallback {} {
 proc ::noop {} {}
 proc ::add {x y} {
 return [expr {$x + $y}]
 }
 proc ::cube {x} {
 return [expr {$x*$x*$x}]
}
if {[critcl::scripting]} {
 fallback
} else {
 critcl::cproc noop {} void {}
 critcl::cproc add {int x int y} int {
 return x + y;
 }
 critcl::cproc cube {int x} int {
 return x * x * x;
 }
 if {[critcl::failed]} {
 fallback
 }
}

The critcl::failed procedure can be called once within a
CriTcl script. It forces a compilation of the generated C
code and returns true if the compilation (or link) fails. This
is typically used at the end of a CriTcl script to either fall
back to Tcl code and/or to issue a warning message. Note
that invoking critcl::failed stops any compiler errors being
displayed (they can still be viewed in the CriTcl log file
under ~/.critcl/platform.

This fallback approach could be useful in projects such as
Tcllib[11], which must be guaranteed to work on platforms
without a C compiler but that contain modules which could
benefit from the speed of a C implementation.

4.3 Dual Tcl and C Implementations

When building packages using CriTcl, it is still desirable
to implement as much as possible in Tcl. To help achieve
this, CriTcl provides the critcl::tsources command to list
Tcl scripts that need to be included in the generated
package.

For example:

critcl::tsources src1.tcl src2.tcl

When building the package, CriTcl will copy these scripts
to a separate directory under package directory (e.g.
lib/package/Tcl) and CriTcl will source these files when
the package is loaded.

4.4 Cross Compiling

As well as supporting compiling on Windows via Cygwin
[12] or Mingw[13], CriTcl supports cross compiling
libraries and packages for Windows on Linux/Unix using
the Xmingwin cross compiler (which is based on Mingw) .
When CriTcl starts it first tries to recognise a cross-compile
environment by looking at the version of the C compiler
being used (by running “gcc -v”). It should be relatively

straightforward to extend this to any gcc based cross
compiler, allowing CriTcl to build code on (and for) most
major platforms.

To set up an Xmingwin cross compiler use the script posted
to comp.lang.tcl by Mo de Jong (a copy is available at
[14]). This script (based on an original version by Mumit
Khan) downloads Xmingwin, builds it and installs it
locally under /usr/local/Xmingwin (you can edit the script
and change the PREFIX variable if you want to install it
elsewhere). Once you have Xmingwin installed, you'll need
to set your PATH to include the Xmingwin bin directory
before using CriTcl. One convenient way of doing this is to
create a script called cross (in /usr/local/bin or ~/bin):

$ cat /usr/local/bin/cross
PATH=/usr/local/Xmingwin/i386mingw32msvc/bi

n:$PATH
export PATH
exec $@

Then, you can compile using the usual CriTcl package (or
library) building commands:

$ cross critcl -pkg blowfish
Cross compiling for Windows using Xmingwin
Source: blowfish.tcl
Library: blowfish.dll
Package: lib/blowfish

If CriTcl recognises a cross compile environment, it
manipulates the tcl_platform array so that it matches that
found on Windows 2000. Specifically, the following values
are set:

tcl_platform(byteOrder) = littleEndian
tcl_platform(machine) = intel
tcl_platform(os) = Windows NT
tcl_platform(osVersion) = 5.0
tcl_platform(platform) = windows
tcl_platform(wordSize) = 4

Critcl also provides the critcl::sharedlibext procedure,
which returns the shared library extension for the target
platform. If you plan on cross-compiling you should use
this variable in your CriTcl scripts instead of info
sharedlibextension (although overlaying the info
sharedlibextension command will probably happen at
some stage).

Intermediate files are stored in ~/.critcl/Windows-x86
irrespective of the platform on which cross compiling
occurs.

There are two other CriTcl procedures that are useful in this
context - critcl::platform returns the target platform, and
critcl::cache returns the name of the directory where CriTcl
intermediate files are stored.

4.5 Lower Level Stuff

Critcl::cproc arguments and return values must be typed.
There are no default arguments or ways to pass more
sophisticated data items than int/long/float/double /char*.
The return type can be “string”, meaning that it is a

Tcl_Alloc’ed char* which will be Tcl_Free’d at some point.

You can, however, use Tcl_Obj* arguments (with no
refcount change), or return it (in which case it will be
decref'ed). If the first parameter to critcl::cproc has type
Tcl_Interp* that will be passed in. Lastly, if the return
type is ok, then an integer return code of type TCL_OK or
TCL_ERROR is expected and will be processed as usual
(errors must set the result, so it is most likely that you'll
also want to specify the Tcl_Interp* argument).
The critcl::cdata procedure can be used to create a Tcl byte
array object, and associated Tcl command:

critcl::cdata hi “hi there!”

% hi
hi there!

When using critcl::ccommand (for example, to invoke
existing C functions in a library) it is possible to specify
the clientdata and delproc arguments to the generated
Tcl_CreateObjCommand function. To do this, use the
optional -clientdata and/or -delproc before the argument
specifying the C code.

For example, the following is from the CriTcl wrapping of
the BLT busy widget:

critcl::ccommand release \
 {data ip objc objv} \
 -clientdata BusyDataPtr {

 int argc = objc;
 char **argv = obj_convert(objc, objv);
 ThreadData *dataPtr = \

(ThreadData *) data;
 Busy *busyPtr;
 int i;

 for (i = 1; i < argc; i++) {
 if (GetBusy(dataPtr, ip, argv[i],\

&busyPtr) != TCL_OK) {
 return TCL_ERROR;
 }
 HideBusyWindow(busyPtr);
 busyPtr->isBusy = FALSE;
 }
 Tcl_SetResult(ip, NULL, NULL);
 return TCL_OK;
}

4.6 Solving Compile Problems

The intermediate C code generated by CriTcl can be kept
around by using the -keep flag. It is also possible to force a
compile (i.e. disregarding the MD5 checksum) by using the
-force flag:

$ critcl -force -keep -pkg blowfish

In case of compile errors the source always remains in the
~/.critcl/platform directory, but either way it won't be
obvious because of the file names generated from the MD5
hash. To find out what the last compile was doing, look at

the end of the log file, which will have a name like
v032.log

CriTcl inserts a "#line" directive in the generated C source,
so that an error on line three of cproc "foo" in script
"bar.tcl" will be reported by gcc as occurring on
"bar.tcl/foo", line 3. No name is added to ccode sections, so
with multiple sections, identifying the line is harder.

Critcl::cheaders can be used to set compile or linker flags,
for example:

$ critcl::cheaders -g

causes the output library to contain symbols and the
 -DNDEBUG flag is not added to the gcc command line.

One area that will need to be addressed is the debugging of
CriTcl procedures - even if it is just defining a few
procedures to do "puts-style" debugging in C.

4.7 Cleaning Up

Over time, the ~/.critcl/ directory could fill up with debris -
log files, old builds of compiled code that failed, and
libraries for various platforms.

You can always delete the ~/.critcl/ area - it has no further
impact than causing a few recompiles on next use.

5 Work In Progress

CriTcl is relatively new technology and there are an
increasing number of people testing the limits and taking
CriTcl forward in a number of areas.

5.1 Additional Languages and Compilers

Arjen Markus has started work on modularising the
compiler interface - to allow definition of compilers,
linkers and other build tools in a generic way. This has
been used to provide a “proof-of-concept” version of CriTcl
that works on Windows with Microsoft Visual C. It could
equally be used to interface with proprietary C compilers,
which often deliver better object code that gcc (for example,
the Solaris C compiler).

But it turns out that CriTcl is not just a way to bind to C
code, it just offers a means to wrap compilation of other
languages, with a bit of automation for all glue aspects.
Arjen Markus has also used the modular build system to in
apply the concepts of CriTcl binding with Fortran source
code:

critclf::fproc nop {} void {
 return
}

critclf::fproc iadd {int x int y} int {
 iadd = x + y
 return
}
critclf::fproc cube {int x} int {

 cube = x * x * x
 return
}

Increasingly, however, users do not have a C compiler
available nor the time or inclination to install one. This is
especially true of Windows users. Work is currently
underway to build a suite of gcc cross-compilers for
common platforms (most likely Windows, Linux and
MacOS X). These would be self-contained, stripped of
unnecessary components to reduce the size and installed in
a standard location that CriTcl knows about. This would
make it much easier for a novice CriTcl user on any of the
above platforms to generate packages for any of the
platforms.

Alternatively, it may be possible to include a small
compiler inside CriTcl - for the x86 architecture -
so that for Windows and Linux no separate compiler is
needed. This would be of benefit even if the included
compiler generates inferior code, i.e. one could choose
between "easy installation" and "more sophisticated
compiler".

Another alternative being considered is to specify that a Tcl
procedure should be compiled to bytecodes, and the
bytecode included in the generated package. The incentive
is not performance, but privacy. This would transparently
integrate TclPro’s [15] procomp and tbcload facilities.

For example,

critclf::tcomp myproc {a1 a2} {
 # this will become bytecodes

for {set i $a1} {$i < $a2} {incr i} {
 # do something sneaky
 ...
 }
}

This would give the best of both worlds - important code
could be protected (including, for example, licensing code)
but the developer could still use Tcl rather than a compiled
language.

5.2 Remote Compilation

It is possible to have CriTcl automatically package the
generated C code and all necessary source files as a self-
contained archive suitable for copying to a target machine
and compiling there.

This could be used as the basis of a "remote compilation"
facility, where this packaged source is shipped to another
machine running a special "server-mode critcl", which
performs the compile and ships back the compiled code.
There is an older experiment which demonstrates this
approach is at [16].

5.3 Building TclKit

Another area being investigated is streamlining of the
build of TclKit itself so it fully relies on CriTcl. This would

make it yet simpler to generate a TclKit executable, using
nothing but totally standard distributions, generic code,
and some Tcl/CriTcl scripts. A first trial was done end of
2001, and the results were promising.

6 One intriguing possibility ...

CriTcl need not be limited just to Tcl applications and
extensions. One idea is to experiment with the concept of
“systems scripting”. Just as a generation ago systems
programming moved from assembler to C, the time may be
right to shift to a predominantly scripted model.

The Squeak language [17] has been implemented this way,
using C as "assembly" but coding even its own Virtual
Machine as Squeak/Smalltalk code which then generates C.
And Squeak is no performance slouch - partly because low-
level designs can be radically altered with little effort
(which the authors did when switching to Forth's Threaded
Code model).

Using this approach for Tcl, the first step would be to
generate tcl.h (and the other header files) from the stub
table definitions themselves, and to generate stub entries
(i.e. not just the C functions) for binding to Tcl using the
Tcl_CreateObjCommand.

This would make it possible to gradually replace parts of
Tcl itself with CriTcl-built code. Taking this last idea
further - the Tcl API could be split into "primary" and
"secondary" calls, and CriTcl used to build the secondary
ones. This would be a first step towards modularisation,
and a smaller Tcl core. One could for example take the regex
subsystem, turn it into a CriTcl module and make it
optional - or at least allow a developer to switch between
minimal and full-scale versions (the "xre" example in
CritLib shows that regex can indeed be built separately).

More practical, perhaps, would be to use this approach to
turn the native file system interface into a module. Other
candidates might be the bytecode compiler, the channel
subsystem, or the exec/pipe-open/load interfaces. Taken to
extremes, the "tcl.h" plus "tcl.decls" headers could become
the center of Tcl, with everything else plugged in - leading
to an equivalent but deeply modular core, and a workbench
for future yet more radical Tcl changes.

It will indeed take some pretty capable coders to implement
this approach, but only at the "bottom end". Once the
mechanism is in place and a foundation working,
everything else can be written in Tcl (albeit a limited
subset) by people who know little about C. Then, at some
point a Tcl+C expert can go through what has been
implemented, pick a hot spot, and replace Tcl by a Tcl/C
mix using CriTcl.

Maybe Tcl is not the optimal language for this approach
but, on the other hand, maybe it is so malleable that it
might just work. Even the OS and compilers themselves
would be candidates for this approach - end up with more
general and flexible "skeletons" on which everything else
rests.

A first step in this direction has been taken recently by
Andreas Kupries - the Scripted Compiler project [18].
Using this, one could write a "C to machine code" translator
in Tcl and end up with a system which can generate and
maintain itself with no compiler at all (except for the usual
bootstrap issues).

The trend and motivation in all of the above is not to redo
things just for the fun of it, but to attempt to change the
core/systems development from a compiled to a scripting
model and in doing so, realise the same benefits of
productivity, flexibility and extensibility.

7 Conclusion

Tcl started its life as an extension language for C. But in
many ways it has become a victim of its own success - for a
growing number of scripters C has become an afterthought
and inconvenience. Even those who (reluctantly) code in C
know lots about Tcl, and very little about compilers,
linkers, make, autoconf, etc.

The key benefit of CriTcl is that it reduces barriers to
adding C code to application, barriers caused by needing to
know too much about Tcl extension structures, build
environments, compiler tool chains, etc. And in doing so, it
addresses the (often heard but equally often fallacious)
concern that "scripting programs are too slow". Rather than
build in a compiled language, CriTcl allows an application
to be developed in Tcl/Tk - with all the associated
productivity and flexibility benefits. In the event that a
performance bottleneck is identified, CriTcl allows that
bottleneck to be recast in C. But more importantly, it allows
this decision to be deferred - there's no sense in scratching
before it itches. And by allowing the developer to continue
working with Tcl, it increases the chances that performance
will addressed at the architectural level.

But CriTcl also takes the Tcl concept of “glueware” to new
levels. One can start with a Tcl/Tk interpreter (either a
traditional tclsh/wish, ActiveTcl or TclKit) and develop
with Tcl being at the center and everything else being small
pieces of C code. CriTcl becomes the means to “run that last
mile”, to get performance and to connect to other C code.
And it potentially saves a significant amount of time, since
there is no need to know about build environments, tool
chains, etc.

So, CriTcl has come from being an experiment in defining C
procedures for performance, to being a new way of building
Tcl extensions, and potentially Tcl itself. And, perhaps, it
could become a stepping stone to a leaner, meaner and
more modular Tcl/Tk core. Then the circle will have closed -
Tcl will no longer be a victim of its own success in
removing the need for compiled applications.

Acknowledgement

Thanks are due to Mark Roseman for his patient reading of
the draft of this paper, his insightful comments and his
uncanny ability to spot even the smallest typo. Thanks also
to Larry Virden for generously giving his time.

References

[1] TEA - The Tcl Extension Architecture
http://www.tcl.tk/doc/tea

[2] Cassidy, Steve TIP #55 - Package Format for Tcl
Extensions
http://www.tcl.tk/cgi-bin/tct/tip/55.html

[3] Ingerson, Brian - Inline for Perl
http://inline.perl.org

[4] Wippler, Jean-Claude - CritLib
http://www.equi4.com/critlib

[5] Starkit - http://equi4.com/starkit
[6] The Starkit Distribution Archive -

http://mini.net/sdarchive
[7] Blowfish - part of the SSLeay package -

ftp://ftp.psy.uq.oz.au/pub/Crypto/SSL
[8] Beazley, David M. - Tcl and SWIG as a C/C++

Development Tool -
http://www.swig.org/papers/Tcl98/TclChap.html

[9] The Graphviz Graphics Visualization Tookit -
http://www.graphviz.org

[10] The BLT Toolkit -
http://sourceforge.net/projects/blt/

[11] Tcllib - The Standard Tcl Library -
http://www.tcl.tk/software/tcllib

[12] Cygwin - http://www.cygwin.com
[13] Mingw - Minimalist GNU for Windows -

http://www.mingw.org
[14] Xmingwin setup script -

http://mini.net/sdarchive/xmingwin.sh
[15] TclPro - http://tclpro.sf.net
[16] Wobble - http://wiki.tcl.tk/wobble
[17] The Squeak Programming System -

http://www.squeak.org
[18] Scripted compiler - http://wiki.tcl.tk/3687

Appendix 1 - blowfish.tcl script

package provide blowfish 0.10
package require critcl

if {![critcl::compiling]} {
 puts stderr "This package cannot be \
 compiled without critcl enabled"
 exit 1
}

namespace eval blowfish {

 critcl::cheaders blowfish_c/*.h
 critcl::csources blowfish_c/*.c

 critcl::ccode {
 #include "blowfish.h"
 }

 critcl::ccommand blowfish \
{dummy ip objc objv} {

 int index, dlen, klen, count = 0;
 unsigned char *data, *key;
 Tcl_Obj *obj;
 BF_KEY kbuf;
 unsigned char ivec[] =
 {0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10};
 static char* cmds[] = { "encode",

"decode", NULL };
 if (objc != 4) {
 Tcl_WrongNumArgs(ip, 1, objv,

"mode data key");
 return TCL_ERROR;
 }

 if (Tcl_GetIndexFromObj(ip, objv[1], \
 cmds, "option", 0, &index) != TCL_OK)

 return TCL_ERROR;

 obj = objv[2];
 if (Tcl_IsShared(obj))
 obj = Tcl_DuplicateObj(obj);
 data = Tcl_GetByteArrayFromObj(obj,

&dlen);
 key = Tcl_GetByteArrayFromObj(objv[3],

 &klen);

 BF_set_key(&kbuf, klen, key);
 BF_cfb64_encrypt(data, data, dlen,

&kbuf, ivec, &count,
 index == 0 ? BF_ENCRYPT : BF_DECRYPT);

 Tcl_SetObjResult(ip, obj);
 return TCL_OK;
 }
}

Appendix 2 - Tkspline.tcl script

package provide Tkspline 0.4.1
package require critcl

if {![critcl::compiling]} {
 puts stderr "This extension cannot be \

 compiled without critcl enabled"
 exit 1
}

critcl::tk

set tcl_prefix [file normalize ~/src/tcl]
set tk_prefix [file normalize ~/src/tk]

critcl::cheaders -I$tk_prefix/generic \
 -I$tk_prefix \
 -I$tcl_prefix/generic \
 -I$tcl_prefix

#
platform specific declarations
#
switch $tcl_platform(platform) {
 unix {
 switch $tcl_platform(os) {
 Darwin {
 set xinclude \
 /usr/X11R6/include
 set xlib /usr/X11R6/lib
 }
 default {
 set xinclude /usr/X11R6/lib
 set xlib $xinclude
 }
 }
 critcl::cheaders -I$xinclude
 critcl::clibraries -L$xlib -lX11
 }
 windows {
 critcl::cheaders -DWIN32 \

-I$tk_prefix/win \
-I$tk_prefix/xlib

 }
 default {
 puts stderr "tkspline hasn't been \

 ported to $tcl_platform(platform)"
 exit 1
 }
}

critcl::ccode {
 #define Tkspline_Init ns_Tkspline_Init
 #include "tkspline.c"
}

critcl::cinit {
 Tk_CreateSmoothMethod(ip,

&splineSmoothMethod);
}

