
Welcome!Welcome!Welcome!Welcome!

Autor:Johann OberdorferAutor:Johann Oberdorfer
With special thanks to: Harald OehlmannWith special thanks to: Harald Oehlmann

Page: 2

Bwidget is a script-only package for tcl/tk offering GUI elements and
it's own mega widget system. The package was originally developed

by Eric Boudailler (1997 to 2000) at Unifix.
In the meantime, ttk:: theme support has been integrated into Bwidget.

The current version is 1.9.1 (available in CVS) in addition, contains a lot of bug
fixes, thanks to Harald Oehlmann who chased behind problems.

http://www.activestate.com/activetcl

As of now, ActiveTcl 8.6.0.0b3 ships with Bwidget 1.9.1!
Hint: On the Mac you can find the package down below: /Library/Tcl/teapot/package/tcl/lib/BWidget1.9.1

A few good reasons, why it's worth to take a look at the actual developement
state.

IntroductionIntroductionIntroductionIntroduction

http://www.activestate.com/activetcl

Page: 3

It looks like, that for existing programs, the migration to tile is still an issue and
most of the applications are running on a lower package version.

Bwidget so far is mostly down-ward compatible and so, friendly to existing
code – that was also the main focus during development!

Migrating existing app's to tile can be done with reasonable amount of effort and
time. That's why, programmers should consider to activate the style option when

using the package.

Package usage scenario:Package usage scenario:Package usage scenario:Package usage scenario:

Page: 4

The following comparison between BW and ttk should give us an overview of
widgets, which might be replaced in the code by native ttk:: widgets. Widgets
flagged as “deprecated” 'll be supported for compatibility reasons as usual.

Identifying deprecated functionality :Identifying deprecated functionality :Identifying deprecated functionality :Identifying deprecated functionality :

Bwidget ttk Remark
ArrowButton - * Doesn't exist in ttk, could be replaced by a styled ttk_button

Button ttk_button + -link option is not compatible with ttk,
Button: offers build in DynamicHelp as well

ButtonBox - + megawidget based on Button

ComboBox ttk_combobox + ComboBox does support images within listbox!

Dialog - megawidget

DragSite - Drag'nDrop implementation, does work basically everywhere

DropSite -

DynamicHelp Does work for other widgets as well. There are quite a lot of “balloon help”
packages available, e.g. tklib's tooltip

Entry ttk_entry *

Label ttk_label *

LabelEntry - + Convenient to use, less code

LabelFrame ttk_labelframe *

ListBox - Rich set of options, multicolumn, image support

MainFrame -

Legend:

 * ... deprecated

 + ... bwidget offers more options than ttk

Page: 5

Identifying deprecated functionality :Identifying deprecated functionality :Identifying deprecated functionality :Identifying deprecated functionality :
MessageDlg -

NoteBook ttk_notebook ttk_notebook looks nicer, but lacks tab management functionality

PagesManager - like this widget, for emulating mac 'a like UI experience

PanedWindow ttk_panedwindow *

PanelFrame - megawidget

PasswdDlg -

ProgressBar ttk_progressbar *

ProgressDlg megawidget

ScrollableFrame Similar to tklib's autoscroll package, less code though

ScrolledWindow -*-

ScrollView -*-

SelectColor megawidget

SelectFont megawidget

Separator ttk_separator *

SpinBox ttk::spinbox *

StatusBar

TitleFrame ttk_labelframe *

Tree ttk_treeview + No question of doubt, Tree has rich set of functionality

Summary: 32 widgets, 9 of them can be possibly replaced by their ttk/tile counterparts.

Page: 6

 So, does the Notebook widget for instance getting obsolete now due
to the new ttk::notebook ?

There is a simple answer to this question:
From a styling point of view yes, but still the Notebook widget has it's

build in tab-scrolling behaviour, which –in real life– is hard to beat.

For a practical example, of how this feature can be used to create a
dynamic notebook widget (similar to what is used in modern

browsers), see:
 http://wiki.tcl.tk/24470

Deprecated functionality - case study:Deprecated functionality - case study:Deprecated functionality - case study:Deprecated functionality - case study:

http://wiki.tcl.tk/24470

Page: 7

Goals:

Backward compatibility whenever possible as a priority one issue.

Ability to dynamically switch styles for tk and ttk widgets to mimic
ttk's behavior as much as possible.

Possibility to synchronize appearance and graphical properties of
standard tk widgets with themed widgets.

Coding:

How to activate tile:

 package require Bwidget 1.9.1
 Bwidget::use -package ttk -style winxpblue -setoptdb 1

Implementation Details V1.9.1Implementation Details V1.9.1Implementation Details V1.9.1Implementation Details V1.9.1

Page: 8

BWidget::use
Argument usage:
-package ttk
|
specify a package name to be initialized, currently
support for the following packages is implemented:
ttk ... try to use tile'd widget set (if available)

-style default / native / myFavoriteStyleName
| | |
| | specify a valid style name,
| | use "BWidget::_get_colordcls" which gives
| | you a list of what's avaliable for tk
| |
| if specified, BW tries to emulate OS color scheme,
| a specific color schema associated to each individual
| operationg system is going to be used
|
same behaviour as before, stay compatible
with previous releases

-setoptdb [no=default|0|yes|1]
|
maintain the option database
if you need a dynamic behavior when changing
the underlying style, activate this option!
#
-themedirs {} = default / a list of valid directory names,
to specifing additional ttk theme packages

Style related Argument usage:Style related Argument usage:Style related Argument usage:Style related Argument usage:

Page: 9

In respect of color settings, BW basically runs in 2 different modes:
- without tile:

The standard initialization sequence (as usual) is:

 package require BWidget

In this case, color codes are set according to the OS currently running
on and acc. to a predefined color scheme, which is a "best guess" of

what might look good for most of the users ...

- With tile - "themed":
In addition to the standard initialization sequence, the following line

must be present in order to activate theming:

 BWidget::use -package ttk -style winxpblue -setoptdb 1

Style related – further explanations:Style related – further explanations:Style related – further explanations:Style related – further explanations:

Page: 10

As styles are not support within the BW distribution (except some
themes found in the demo), a programmer needs to support required

theme packages separately.

A typical initialization code block might look like:

BWidget::use \
-package ttk -style winxpblue -setoptdb 1 \

-themedirs [list [dir where to find specific theme
package]]

In addition, a separate procedure must be provided, to manage and
colorize standard tk "widgets", in case a <<ThemeChanged>><<ThemeChanged>>

virtual event arises.

The procedure to handle this needs to follow the naming convention:

"Bwidget::<mythemeName>_Color"

Where does the style come from ?Where does the style come from ?Where does the style come from ?Where does the style come from ?

Page: 11

In order to synchronize both kind of widgets (tk & ttk), a minimum set
of keywords is used to achive this behaviour.

Unfortunately tk's option database does not have a dynamic behavior.
Once a tk widget has been created, changing a graphical property in

the option database won't have any effect.

When declaring the -setoptdb flag, it is possible to change colors of
already created widgets. In this case, the <<ThemeChanged>>

virtual event in addition with a callback routine is used, to retrieve
and trace back relevant GUI elements.

Color Mapping:Color Mapping:Color Mapping:Color Mapping:

SystemWindow -background
SystemWindowFrame -background
SystemWindowText -foreground
SystemButtonText -activeforeground
SystemButtonFace -activebackground
SystemDisabledText -disabledforeground
SystemHighlight -selectbackground
SystemHighlightText -selectforeground
SystemMenu -background
SystemMenuText -foreground
SystemScrollbar -troughcolor

Page: 12

Reasons why we need the additional color mapping:

Styled color declarations and names do not follow a strict rule, so - most likely
- there might be differences from theme to theme.

As a consequece of this fact, we have to support a minimum set of color
declarations within Bwidget, which needs to be declared for each individual

theme. Unsupported themes 'll fall back to the "default" color scheme!

During intitialization, Bwidget looks for the existence of the following
procedure, which needs to be adopted for a new theme:

Color Mapping – some good reasons:Color Mapping – some good reasons:Color Mapping – some good reasons:Color Mapping – some good reasons:

proc ::BWidget::aquativo_Color { } {
 variable colors

 set colors(style) "aquativo"
 array set colors {
 SystemWindow "#EDF3FE" SystemHighlight "RoyalBlue"
 SystemWindowFrame "White" SystemHighlightText "White"
 SystemWindowText "Black" SystemMenu "LightGrey"
 SystemButtonFace "#fafafa" SystemMenuText "Black"
 SystemButtonText "Black" SystemScrollbar "White"
 SystemDisabledText "#fafafa"
 }
}

Page: 13

Migrating to tile – a practical example:Migrating to tile – a practical example:Migrating to tile – a practical example:Migrating to tile – a practical example:
As a prove of concept, we are going now to migrate a well known

application, e.g. ased3.0b16.vfs to tile:

Step1: copy bwidget's source to the required directory branch
Step2: and copying the requ. theme package to ased.../lib
Step3: Finally add the magic options:

package require Bwidget 1.9.1
BWidget::use \

-package ttk \
-style winxpblue \
-setoptdb 1

The result looks like:

Page: 14

For sure, there is a bit more coding required, such as:

Try to get rid of arguments which interfere with tile like:

highlightthickness, highlightcolor, borderwidth, bd,...

Replace button widgets with either Button (preferable) or ttk::button.
The same is true for oder kind of widgets (frame, etc. ...).

For Contributed widgets, replace all occurences of:

Widget::getoption with Widget::getMegawidgetOption

and [Widget::theme] with [BWidget::using ttk]

Make sure to use predefined colorcodes,
rather than color declarations:

 {-foreground Color "SystemButtonText" 0}
 {-background Color "SystemButtonFace" 0}
 {-activeforeground Color "SystemButtonText" 0}
 {-activebackground Color "SystemButtonFace" 0}
 {-disabledforeground Color "SystemDisabledText"0}
 {-troughcolor Color "SystemScrollbar" 0}

Migrating to tile – a practical example:Migrating to tile – a practical example:Migrating to tile – a practical example:Migrating to tile – a practical example:

Page: 15

 As long as a frame doesn't have a decoration (rounded frame or
whatever,...) the only difference is that a ttk::frame changes it's background

color immediately when a ttk style change takes place.

 Using both types of frame objects at the same tame (tk + ttk), some
additional logic is needed for synchronizing colors, etc...

Typically, this is done via binding to the <<ThemeChanged>> virtual event.

 No question anyway, if we use Bwidget's Frame object!

frame versus ttk::frame ?frame versus ttk::frame ?frame versus ttk::frame ?frame versus ttk::frame ?

Page: 16

Minimum tile version is tile 0.8 !

 As there are changes between 0.7 and 0.8 which would cause

 quite a lot of additional coding such as:

 if { [info commands ::ttk::style] ne "" } {
 set styleCmd ttk::style

 } else { set styleCmd style }

 it is required to have at least tile 0.8!

 Simpler is easier: Update to tile 0.8, otherwise you won't get it!

What min. Tile version do we need?What min. Tile version do we need?What min. Tile version do we need?What min. Tile version do we need?

Page: 17

Regarding Bwidgets future developement, what is planned so far:

Font management:
Additional functionality allowing to “register” user defined fonts which can then

be easily increased/decreased by the user (like in modern browsers “ctrl+/ctrl-”).

Additional widgets:
Imageflow ?

Additonal demo applications + improved theme support.

Finally – What comes next?Finally – What comes next?Finally – What comes next?Finally – What comes next?

Page: 18

Attached I would like to offer a
collection of themes gathered

from the web and adopted
slightly for base64 support.

Benefits:

To prove imperformance when
calling up an application,

To establish a convenient
method to ship images together

within example code.

See as well:

http://wiki.tcl.tk/24595
themes.tar.gz

Extra – unified theme packages:Extra – unified theme packages:Extra – unified theme packages:Extra – unified theme packages:

http://wiki.tcl.tk/24595

Page: 19

Thank you very much for your attention and the idealism
to contribute to the open source idea!

Johann Oberdorfer

End of the presentation.End of the presentation.End of the presentation.End of the presentation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

