
Development of Software Interfaces
using TCL/Tk

Authors

Amit Dave (amitdave@sac.isro.gov.in), Jitendra Sharma, Anil Sukheja, Sumit Kumar,

Nutan Kumari, Heena and Parth Nakum

Space Applications Centre (ISRO), Ahmedabad-380015, India

Abstract

Interfaces are essential elements of a complex software system and one of the key

aspect of system engineering practices. Well defined soft interfaces decide the health

of a system, makes them rugged enough to withstand changes. Programming

language selected, for the system under development, should have Application

Programmer’s Interfaces (API) to clearly define the interfaces. More importantly the

language API should make interface development easier for building a complex

system. Toolkit Command Language (TCL/Tk) provides simple mechanisms for

building the server applications, package based architecture, gluing, error handling,

GUI and output processing.[1][2] TCL has packages for processing data objects using

XML, JSON, SOAP and transport using HTTP. Space Applications Centre (SAC),

ISRO develops electro-optical sensors for its remote sensing programme. These

sensors are exhaustively tested for their performance during development, using a

software system called XSCoPE – A System for EO Payload Evaluation. The system

can handle different types of sensors concurrently in different stages of their

development. One of the layer of XSCoPE, called ASH!Server is entirely written using

TCL and uses different software interface methods. This paper discusses various

information interface mechanisms and describes them using TCL, in the context of a

system like XSCoPE.

Keywords

Remote Sensing, ISRO, JSON, XML, performance parameters, software engineering,

TCL/Tk, API

[1] Introduction to XSCoPE

XSCoPE – A Linux based Evaluation System [3] for Electro-Optical payloads is one of

the key elements for development of sensors for various earth observation and

planetary missions by ISRO. The system is being used for all types of sensors and its

architecture is depicted in Figure 1.

The central block – called Arsenal Shell (ASH!) – is a collection of TCL packages for

various tasks. Its services are exported using a component called ASH!Server on top

of the shell.

Figure-1: XSCoPE Architecture

As seen in Figure-1, the overall system requirements are met by various sub-systems,

which use different software and ‘speak’ their native languages. Therefore, the need

of interfacing between these sub-systems arises and this is important in overall

architecture. This section provides functions and brief description of the sub-systems.

The test setup(s) comprises:

(1) data acquisition system

(2) sensor commanding and instrument control apps

(3) client applications for individual test bench.

Data acquisition system has hardware and software elements customized for the

sensor under test. It deals with the data rates and pre-processing complexities of the

sensor. Commanding module generates necessary interface signals for the sensor.

Instrument control apps provides interfaces with the peripheral hardware like power

supply, micro-positioner, light source etc. Client application provides front-end for user

interaction and visualizations for various test bench specific tasks.

Intranet

Oracle 11g

PL/SQL

Results++ Web

Portal (php)

Raw Data Store

 Test Setup – 1

Data

Acq.

Client Apps

(Java)

Test Setup – N

Data

Acq.
Client Apps

(Java)

The central block of the system called ASH!Server provides its services to the client

applications over a high-speed 10G intranet. It provides range of services as follows:

 raw data acquisition,

 pre-processing of data and restructuring,

 computation of performance parameters,

 visualizations generation,

 image generation and pre-processing,

 data and test results archival,

 abstraction of database tasks,

 offline data analysis,

 macro handling,

 multi-client support,

 user management and clustering

These functions are divided into ASH! Packages, with each package handling one or

more tasks by invoking Arsenal tools and/or Linux utilities from the bottom layer.

Arsenal layer is the bottom most layer, which is formed by a set of in-house tools

developed in C/C++. They provide various functions for computing performance

parameters, data manipulation, formatting etc. These tools, combined with standard

Linux utilities, meet the majority of requirements. For advanced/complex computation

needs, MATLAB executables can be made and invoked.

The sub-system interconnections are made up of standard interfaces as described in

the subsequent sections.

[2] Methods to exchange data between sub-systems

Various methods exist to exchange data between the software sub-systems, few of

which are discussed here.

XML (eXtensible Markup Language) is one of the most widely used methods of

communication between the software elements. Combined with SOAP and RPC it

becomes a powerful technique to create rugged software environment. Many software

applications use XML base to create their own language to establish communication

between server applications and agent software. Google’s Keyhole Markup Language

(KML), Geography Markup Language by Open Geospatial Consortium and Scalable

Vector Graphics (SVG) by W3C are popular XML dialects to name a few.

JSON (JavaScript Object Notation) is a lightweight, text based, language independent

data interchange format and is more popular in Web environment. The JSON format

is used to describe objects and exchange them over a network connection between a

server and web application, serving as an alternative to XML. Both JSON and XML

are used for serializing objects but JSON being more verbose, it is efficient over

network.

In the CSV (Comma Separated Values), TSV (Tab Separated Values) or simply

delimited values, information to be exchanged is delimited with comma, tab or some

such character, agreed upon by both the software. When amount of data to be

exchanged is large, XML or JSON being more verbose, their parsing needs more

resources. In such situations, CSV is most suitable. Its disadvantage is that, it makes

a hardwired custom interface between the software elements and it becomes difficult

to handle changes on both ends.

For large data objects, binary data formats provide even more efficient way of

information exchange. Packetized data objects representations as defined by

CCSDS[4] standard are popular amongst the data links based communication and

applications. Tele-communication instruments and imaging sensor hardware typically

generate such standardized streams of data. However, these formats make the

systems rigid and not so amenable to changes.

Interface mechanisms are selected considering the factors like amount of data, nature

of software sub-systems and application.

[3] XSCoPE Interfaces

XSCoPE sub-systems are shown in Figure-1. Various interfaces mechanisms used

between the sub-systems are discussed in this section.

ASH!Server and Data Acquisition System

Video data acquisition source generates binary data streams, whose format varies

across sensors and hence, it is in a non-standard form. The data formats are generally

dictated by the hardware.

ASH!Server and Test Setup Client Apps

A sensor test setup block comprises the following:

1. data acquisition system (video and telemetry), which in turn connects to a

sensor under test;

2. a client application (ExpressClient) on which visualizations appear;

3. instrument agent software for laboratory peripheral instruments like micro-

positioner, light/spectral source, power supply etc. [5]

ExpressClient application is developed using Java and it ‘talks’ to ASH!Server by

invoking commands. This is a plain text information, where the information passed to

the server, is in TCL’s cmdline syntax. The information returned by the server, in

response to the command execution, is in various forms and depends on the

command invoked.

For data plotting purpose, generated data is converted to delimited values (in this case

CSV) and used by plotting utility in client for generating interactive plots.

Sensor performance parameters viz. signal-to-noise ratio, square wave response,

band to band registration, along with other meta-data are represented as XML objects

in XResult markup format as shown in Figure-2. XResult objects when retrieved, are

formatted and displayed using Java’s JTable control and in XSLT when displayed in a

web browser.

Figure-2: XResult markup

ASH!Server and database

Oracle 11g database server archives all test results, generated by the sensors. Test

results are formatted in XResult markup format and stored in Oracle 11g database for

archival purpose. A set of PL/SQL procedures handle the XResult object.

ASH!Server and Results++ Intranet Portal

Test results and raw data archive are accessible through an intranet portal called

Results++, which also facilitates raw data analysis and downloads. Results++ portal

invokes TCL macros on ASH!Server, which produce data objects and their

representation in JSON format. Stored results in XResult format are rendered using

XSLT stylesheets on a web page.

Table-1 summarizes interfaces between the XSCoPE subsystems:

Table-1: Summary of Interfaces

Sub-Systems Involved Interface (Type)

ASH!Server Data Acquisition System Binary (non-standard)

ASH!Server ExpressClient Applications XResult, CSV (standard)

ASH!Server Oracle 11g XResult – an XML dialect

(standard)

ASH!Server Results++ Portal XResult – an XML dialect,

JSON (standard)

[4] Interface Mechanisms provided by TCL

This section describes the TCL mechanisms in the context of utilization in XSCoPE

software system.

XML

TCL provides extensions for parsing XML contents. It offers (1) SAX – stream oriented

parsing and (2) DOM – document oriented parsing. tDOM and TCLXML/TCLDOM are

the two main TCL extensions providing parsers[8]. XSCoPE uses tDOM package by

creating document objects, as the need is such.

JSON

TCLlib ‘json’ package provides JSON parser and generator. Figure-3 shows a typical

JSON objects.

Figure-3: A typical JSON object used in XSCoPE

Most languages require that JSON be first converted to a native representation, and

later serialized back to a string, while TCL provides the means (through the TCL_Obj

mechanism) to efficiently manipulate the JSON directly [6].

CSV

‘csv’ package in TCLlib provides mechanisms for dealing with CSV multi-line data. It

allows converting CSV to HTML, cutting CSV columns, joining two CSV data sets and

sorting[8]. ASH!Server produces certain data in this form, which are used for

visualizations, downloading, exporting to Microsoft Excel, Matlab or such data analysis

tools or importing into Oracle11g.

[5] Conclusion

Interfaces between sub-systems play an important role in building a complex software

system. Standard data exchange methodologies should be supported by the language

being used so that sub-systems can be designed, developed and maintained

comfortably. TCL provides industry standard mechanisms for developing software

interfaces. TCL itself being a lightweight scripting language, interface mechanisms

also exhibit similar characteristics. With emerging interface technologies that can

quickly be embedded into standard TCL distribution or as third party packages, it

proves to be an ideal platform for building reliable complex systems [7].

[6] Future Scope

TclSOAP, a Tcl package, provides method binding for Tcl clients to remote procedures

and implemented using either SOAP, XML-RPC or JSON-RPC [8]. They use XML and

JSON for formatting the data and use HTTP for transport to and from the service

provider. Combined with ‘tclhttpd’ and RPC, servers can be built. In future, certain

mechanisms within XSCoPE shall be replaced with these concepts to achieve more

robustness.

Acknowledgements

We sincerely acknowledge constant motivation and encouragement provided by Mr.

Ashish Mishra, Division head, and Mr. D.R. Goswami, Group Director, Payload

Checkout Electronics Group. We also thank Mr. S.S. Sarkar, Deputy Director, SEDA

for providing the opportunity to work on Payload Evaluation System.

References

[1] Clif Flynt, “TCL/Tk – A Developer’s Guide”, 2nd Edition

[2] John K. Ousterhout, “TCL and the Tk Toolkit”, Addison-Wesley, ISBN 0-201-

63337-X

[3] Amit Dave, Jitendra Sharma, Ashutosh Dutt, Anil Sukheja, Ashish Mishra and

D.R.Goswami, “TCL/Tk based Framework – A Lynchpin in Development of

Instruments for Remote Sensing”, 21st TCL/Tk Conference November 2014, USA.

[4] CCSDS 133.0-B-1 BLUE BOOK for Space Packet Protocol, September 2003

[5] Amit Dave, Jitendra Sharma, Ashutosh Dutt and Anil Sukheja, “Generic protocol

for seamless control of test instrumentation towards realization of electro-optical

sensors”, IEEE Recent Advances in Intelligent Computational Systems, Sep 2011.

[6] Cyan Ogilvie, Ruby Lane, Inc. “JSON as a Native TCL Value”, October 24, 2016

[7] Zach Conn, FlightAware, “Hyperfeed: FlightAware’s parallel flight tracking engine”

[8] Web portal www.tcl.tk online reference.

