
Tcl WebServices: FlightXML at FlightAware

Jonathan Cone
Software Developer
FlightAware

FlightAware is a flight tracking company founded in 2005 with a primarily Tcl code
base. The company consumes numerous data feeds from entities such as the FAA, NOAA,
Eurocontrol, Australia, New Zealand, its own ADS-B network and many others. The data from
these feeds is processed, normalized and filtered before being stored in a PostgreSQL database
server and sometimes in an in-memory data store referred to as Birdseye. When the company
first started, there was only a website for accessing its aviation data and it quickly became clear
that commercial and enthusiast customers needed programmatic ways of accessing
FlightAware’s data. Over the years FlightAware has launched three versions of an API called
FlightXML to provide that access. The scope of the data offered has expanded over the years
and now includes items such as weather METAR and TAF data, Airline Flight Schedules,
Enroute, Scheduled, Arrived and Departed flight information for airports, extended information
on specific flights, tracking data on flights, registered owner for aircraft, and airport delays to
name a few.

The first version of FlightXML, originally called DirectFlight, was launched in 2006,
shortly following the launch of the main website. At that time, the decision was made to host
FlightXML separately from the website so a distinct tclhttp instance was used. Since
DirectFlight was hosted separately, it required a different hostname from the website and
directflight.flightaware.com was used. The preference would have been to have the service on
the main hostname if it had been technically convenient, but that was not the case and the unique
hostname has been used to this day. As REST services were not as popular at that time and no
tcl libraries supported REST servers, DirectFlight only offered a SOAP service. The TclSOAP
library was used to implement the DirectFlight service, using the SOAP::wsdl and
SOAP::domain packages. DirectFlight was able to use much of the existing functionality in
FlightAware by calling existing procs to generate the requested data and then formatting the
response in the service definition of each method. The same is generally still true in the latest
versions of FlightXML. In 2010 FlightAware migrated from the tclhttp web server to the more
broadly supported Apache webserver allowing the website and flightxml to be served by the
same Apache instance. Apache Rivet is now used as the entry point for all FlightXML services.
The billing structure for DirectFlight charges customers based on usage and API call class (some
calls are more expensive than others), with invoices sent on a monthly basis after usage is
computed.

Following the success of DirectFlight, later renamed FlightXML1, a second version of
the API was planned. One disadvantage of the TclSOAP library was that it was not very popular
and had not been in active development since about 2004. By the time FlightXML2 was under
development, tclws was becoming the clear choice for implementing a SOAP service with Tcl.
Therefore in 2010, FlightXML2 launched and was built using the tclws library. FlightXML2
expanded the dataset provided through the API to include additional details on flights such as the
faFlightID, which uniquely identifies a flight on the FlightAware system. Additional

information on METARs were included and the ability to programmatically setup alerts. In 2011
enhancements were made to tclws to include a REST service as well as the SOAP service.

The latest incarnation of FlightXML, FlightXML3, is currently in beta and the production
release is expected to be available at the end of 2017 or beginning of 2018. V3 uses the tclws
library to provide the service definitions, but some incremental enhancements have been made to
the library. The service definition was updated to support an optional operator. Much as the
name implies, that optional operator allows the developer to specify that the response or request
field is optional and may not be included. The business motivation for FlightXML3 is to allow
users to access more of the data they desire using fewer numbers of API calls. With
FlightXML1 and FlightXML2, users would often need to make multiple calls to get all the
relevant information on a flight, and some data such as block in and block out (gate arrival and
departure) times were not available. For example, in order to reconstruct the data found on the
main FlightAware page for an airport using FlightXML2, calls must be made to Departed,
Arrived, Enroute and Scheduled and those calls were all combined into a single AirportBoards
call in FlightXML3. The billing structure for FlightXML3 has moved to a subscription plan
where users can sign up for a block of calls per month with a maximum query rate. Internally
the query rate is enforced using memcached.

FlightXML Architecture and Implementation

 The architecture for FlightXML2 and 3 is similar and will be the focus of this section.
Requests to both www.flightaware.com and flightxml.flightaware.com are first passed to a
varnish server responsible for caching web requests. The flightxml domain is excluded from that
caching mechanism so requests are always passed back to the Apache webservers. The Apache
configuration allows for POST or GET requests, and SOAP or REST requests are routed to the
relevant rivet page based on the path. For example, a request to
flightxml.flightaware.com/json/FlightXML2/FlightInfoEx will be routed to the rest2.rvt page.
The rivet pages load the flightxml, tclws packages and some configuration information,
authenticate the user if required, handle the actual request and any errors and finally send the
response back. Figure 1 shows the flow of a request from users to FlightXML.

Figure 1 - FlightXML Request

 FlightXML encapsulates the service and API method definitions in a Tcl package which
the landing pages require. In order to make use of tclws, the FlightXML2 package begins by
importing WS::Server and a utility package which contains functionality common to all versions
of flightxml. The tclws service definition then defines the details of the service being generated.
There are a number of options available when defining the tclws service including host,
description, service, author, host, prefix and others. Calling the tclws service definition proc sets
up the global serviceArr array with the specified options, installs the wsdl document, installs the
wsdl and installs the operations of needed based on the mode of operation. tclws supports
running on tclhttpd, Apache with rivet, AOLserver, WUB, wibble and embedded mode. The
FlightXML2 service definitions specifies rivet mode.

package require flightaware-main
package require WS::Server 2.4
…
set flightxml2_serviceName “FlightXML2”
set ::flightxml2_endpoint_base "/soap/FlightXML2"
set ::flightxml2_hostname "flightxml.flightaware.com"
set ::flightxml2_stylesheet "/commercial/flightxml/flightxml2.css"
…

Define the service

::WS::Server::Service \
 -mode "rivet" \
 -service $::flightxml2_serviceName \
 -author {FlightAware} \
 -description {FlightXML2 Web Services} \
 -htmlhead {FlightXML2 Web Services} \
 -stylesheet $::flightxml2_stylesheet \
 -docFormat "html" \
 -traceEnabled N \
 -host $::flightxml2_hostname \
 -prefix $::flightxml2_endpoint_base \
 -errorCallback fxmlv2_error_logging_callback

Figure 2 - tclws Service Definition

 Individual operations are defined by calling the ::WS::Server::ServiceProc. The
command takes 5 arguments: the service name, the name info which is a list with the operation
name, the return type and the description, the argument list which is list of form argument name
followed by argument type information, the documentation and finally the implementation body.
FlightXML defines the documentation before the service definition in a variable for readability
and we have found that works well. When defining arguments the argument type info should be
a key value list with the type and optionally the comment. Any comment added here will be
included in the generated documentation. Figure 3 is the service definition for the FlightXML2
FlightInfoEx method which returns an array with details on a specified flight.
 The return and argument types can be one of four types: Simple non-array, Simple array,
Non-Simple nonarray and Non-Simple array. The simple types are mostly what you might

expect and a full listing are available in the tclws documentation, but string, Boolean, decimal,
float, double, duration, dateTime, time, date and others are supported. If however your type is
not a simple one but rather a struct or nested structs then tclws allows for the creation of custom
types. The ::WS::Utils::ServiceTypeDef proc defines new types and accepts arguments for the
mode (Client or Server), the service name, the name of the type and the definition. The
definition of the type consists of the fields followed by the field information, where the field
information is a list of the type, typeName, comment and commentString. The comment is
optional and if the type is an array then the typeName should be suffixed with (), for example
int() would be an array of integers. Figure 4 shows the type definition for a FlightExStruct and
FlightInfoExStruct. The FlightInfoEx operation shown earlier returns a FlightInfoExStruct
which contains the next_offset field, an int, and an array of flights of type FlightExStruct. In the
WSDL generated by tclws, the minOccurs and maxOccurs will be determined based on whether
the type is an array or optional. If a type is optional then the minOccurs will be 0 and if the type
is an array the maxOccurs will be infinite. Otherwise both values will be 1. When using a
custom type as the return type of an operation, the returned value should be a list consisting of
the field name followed by the field value, and the top level list should be the operation name
with “Result” appended followed by the results. For example FlightInfoEx returns a list with
{FlightInfoExResult {next_offset -1 flights {…} } }.

Define FlightInfoEx

set dochtml {<p>FlightInfoEx returns information about flights
for a specific tail number (e.g., N12345), or an ident
(typically an ICAO airline with flight number, e.g.,
SWA2558), or a FlightAware-assigned unique flight
identifier (e.g. faFlightID returned by another FlightXML
function).</p>
...additional description
<p>See FlightInfo for a simpler
interface.</p>}
--
::WS::Server::ServiceProc $::flightxml2_serviceName {FlightInfoEx {type
FlightInfoExStruct comment "returned results"}} {
 ident {type string comment "requested tail number, ...""}
 howMany {type int comment "maximum number of past flights to
obtain..."}
 offset {type int comment "must be an integer value of the
offset..."}
} $dochtml {
 # body implementation
 ::log::log notice "FlightInfoEx '$ident' '$howMany' '$offset'"
 ::flightxml::charge
 ...
 return [list FlightInfoExResult $result]
}

Figure 3 - tclws Operation Definition

An advantage of using tclws is that it will generate service documentation and WSDL
automatically. The –docFormat option allows you to specify if the documentation will be in

plain text (“text) or html (“html”). The ::WS::Server:: generateInfo proc generates the
documentation in the specified format and will then output that data based on the mode of
operation. For the FlightXML case, the headers are set to 200 with a type of “text/html;
charset=UTF-8” and the html or text is output using a puts. Other modes use methods specific to
that server, such as the tclhttpd mode which calls ::Httpd_ReturnData. The documentation is
generated based on the service definition, operations and complex types defined. As mentioned
previously the description for each operation will be included, and inputs will be listed along
with any information contained in the comment for the type definition. The return type and its
description are part of the operation definition itself. The WSDL is generated by calling the
::WS::Server::generateWsdl proc and will output those results based on the mode of operation.
For FlightXML we expose different endpoints for accessing documentation and the wsdl by
examining the path to see if the wsdl, doc or jsondoc are set and if so then calling the relevant
tclws proc. Figure 5 illustrates how that is done for FlightXML2 on its landing rivet page.

::WS::Utils::ServiceTypeDef Server $::flightxml2_serviceName
FlightInfoExStruct {
 next_offset {type int}
 flights {type FlightExStruct()}
}

::WS::Utils::ServiceTypeDef Server $::flightxml2_serviceName
FlightExStruct {
 faFlightID {type string comment "unique identifier

assigned by FlightAware for this flight"}
 ident {type string comment "flight ident or

tail"}
 aircrafttype {type string comment "aircraft type ID"}
 filed_ete {type string}
 filed_time {type int}
 filed_departuretime {type int}
 filed_airspeed_kts {type int}
 filed_airspeed_mach {type string}
 filed_altitude {type int}
 route {type string}
 actualdeparturetime {type int}
 estimatedarrivaltime {type int}
 actualarrivaltime {type int}
 diverted {type string comment "boolean indicator"}
 origin {type string comment "the origin airport

ID"}
 destination {type string comment "the destination

airport"}
 originName {type string}
 originCity {type string}
 destinationName {type string}
 destinationCity {type string}
}

Figure 4 - tclws Type Definition

Check if user is requesting WSDL or documentation
if {[var exists wsdl] || [env PATH_INFO] == "/wsdl"} {
 # send the WSDL without requiring authentication

 ::WS::Server::generateWsdl $svcname RivetClient
} elseif {[var exists doc] || [env PATH_INFO] == "/doc"} {
 # send the functional documentation without requiring
authentication

 ::WS::Server::generateInfo $svcname RivetClient
} elseif {[var exists jsondoc] || [env PATH_INFO] == "/jsondoc"} {

 ::WS::Server::generateJsonInfo $svcname RivetClient
}
...

Figure 5 - rivet page loading WSDL or documentation

FlightXML Component Enhancements

 As part of the development of FlightXML2, in 2011 FlightAware added REST service
functionality to the tclws service. This development was driven by frequent requests from users
for that functionality as REST services grew in popularity and became ubiquitous. Tclws was
updated to support the “-rest” argument to the callOperation method. By passing the “-rest”
argument, tclws will generate a JSON response to the call using the yajltcl library. This means
that any existing tclws services can include a REST service with a fairly minimal code change.
 Internally a number of changes were made to implement the REST behavior in tclws.
New methods were added to handle conversion from dictionary to a JSON tree for simple types,
simple array types, non-simple types and non-simple array types. The conversion between types
is limited to a subset of the types available in tclws, but covers the most commonly used ones.
Figure 6 shows the type conversion between tclws types and yajl types. When the REST flavor is
selected, the Content-Type for the response is also set to “application/json”. An additional
config option was added to beautify JSON which will format the output in a more readable
human readable way. On the FlightAware fork of tclws REST responses would always set the
status code to 200 even if an error was encountered. This was later updated, and now if the error
code is a valid http status code then tclws will respond with that status code. For example if you
had a user who had given you an invalid input, in the body of the operation definition you can
throw an error and set the errorCode to 400 to have tclws respond with the 400 status code.
 During FlightXML3 development, it was discovered that the WSDL generated by tclws
always had a minOccurs of 1. For some SOAP clients, the default behavior is to strictly enforce
input parameter and response conformity to the WSDL. In FlightXML not all input parameters
are required on every operation, and responses may not contain all the listed elements depending
on the query. To address this issue, an optional operator was added to tclws type declarations.
The question mark optional operator was adopted, borrowing from Swift, to indicate that a type
was optional. When the type is marked the ‘?’, the minOccurs in the WSDL will then be set to 0.
Figure 8 shows an example of declaring a non-simple type in tclws with optional fields from a
FlightXML3 type declaration.

mapping of how the simple SOAP types should be serialized
using YAJL into JSON.
array set ::WS::Utils::simpleTypesJson {
 boolean "bool"
 float "number"
 double "double"
 integer "integer"
 int "integer"
 long "integer"
 short "integer"
 byte "integer"
 nonPositiveInteger "integer"
 negativeInteger "integer"
 nonNegativeInteger "integer"
 unsignedLong "integer"
 unsignedInt "integer"
 unsignedShort "integer"
 unsignedByte "integer"
 positiveInteger "integer"
 decimal "number"
}

Figure 6 - simple SOAP types to YAJL

if {![flightaware_validateFlightId $faFlightID]} {
 error "INVALID: invalid {faFlightID}" {} 400
}

Figure	7	-	Passing	http	status	code	to	tclws	through	error	code

Forecast Wind Struct
::WS::Utils::ServiceTypeDef Server $::flightxml3_serviceName
ForecastWindStruct {
 symbol {type string comment "Raw TAF wind symbol"}
 direction {type string comment "Wind direction"}
 speed {type int comment "Wind speed"}
 units {type string? comment "Optional. Wind units."}
 peak_gusts {type int? comment "Optional. Peak gusts for forecast."}
}

Figure 8 - tclws type definition with optional operator

 With the addition of the optional operators, it was then possible to have tclws strictly
enforce input and response parameter requirements. The service configuration now has an
option to strictly enforce all required parameters, “-enforceRequired”. The option is set to “N”
by default, but if enabled then tclws will throw an error if either the request or response is
lacking a required parameter.
 The initial mapping of the float SOAP type in tclws was to the float yajl type. Because of
the limitations of float precision, responses with float types in FlightXML2 frequently had
extraneous decimal data. For example if an airport’s elevation was 80.5 feet and a user requested
the AirportInfo operation, the response would have an elevation of 80.49999998 feet. To resolve

this issue, the float SOAP type was mapped to the yajl number type. Yajl treats a number as a
string internally so the response was correct, but it was found that yajltcl did not check to see that
a number really was a number and would accept any input for that type. An enhancement was
then made to yajltcl to include a lexer in yajltcl to check a numeric input and ensure that it was a
valid number.
 A final enhancement to tclws as part of FlightXML development added an error handler
callback option to the service definition. If the proc name of an error handler is specified in the
“-errorCallback” option, then that callback will be called in the event of an error executing the
requested operation. The arguments passed to the callback are the errorMsg, the httpStatus code,
the operation name and the flavor (REST or SOAP). In FlightXML3 the errorCallback is used to
set the http status code of the response based on a parsing of the error message. The error
callback could also be used to log those errors to a reporting service. For FlightXML, one server
is running a udp listener which logs all errors to an output file as well as sending error
information to a zabbix server for graphing. As FlightXML is operating over multiple
webservers this provides a central repository for all error related information. In particular this
allows FlightAware to monitor for particular errors and alert users if their programs are making
repeated failed attempts (FlightXML charges users for invalid queries so it benefits users to
know if they are making multiple invalid attempts each day). Figure 9 shows the definition the
error callback handler for FlightXML3. To set the response status code, the httpStatus is upvar
and then set to the appropriate value based on the type of error.
	 Future	enhancements	for	FlightXML	have	proposed	supporting	a	filter	parameter	on	all	
tclws	queries	with	OData	operator	support.		The	proposed	changes	would	implement	a	subset	
of	OData	operators	such	as:	eq,	ne,	gt,	ge,	lt,	le,	and,	or	not.		The	operators	would	allow	a	user	
to	do	serverside	filtering	of	their	recordset	by	operating	on	the	response	fields.		For	example	for	
FlightXML	a	user	who	is	requested	information	on	flights	at	Chicago	O’Hare	may	want	to	only	
see	flights	with	a	destination	of	John	F	Kennedy	in	New	York.		The	filter	parameter	could	then	
be	set	to	“filter=destination.code	eq	KJFK”	and	tclws	would	filter	the	results	for	just	flights	with	
a	destination	of	KJFK	before	transmitting	the	response.	
	 The	aforementioned	enhancements	to	tclws	were	merged	into	the	public	repository	in	
June	of	2017,	so	these	features	are	now	available	to	any	tclws	consumers.		As	FlightAware	
continues	its	work	on	Tcl	web	services	any	future	enhancements	will	be	pushed	to	the	
community	as	well.		FlightXML	proves	that	high	performance,	reliable	web	services	based	on	Tcl	
libraries	are	a	viable	option	for	any	developers	wanting	to	expose	their	services	and	data	in	an	
API.	

Define error handling callback.

proc fxmlv3_error_logging_callback {errorMsg httpStatus method {flavor ""}} {

 if {[info exists ::user(username)]} {
 set username $::user(username)
 } else {
 set username {}
 }

 if {$httpStatus ne {}} {
 upvar $httpStatus httpStatusCode
 } else {
 set httpStatusCode {}
 }

 set logMsg "flightxml3 "
 if {[string match -nocase {*UNKNOWN_METHOD*} $errorMsg]} {
 append logMsg "invalidMethod {$errorMsg} $username $method"
 set httpStatusCode 404
 } elseif {[string match -nocase {*BAD_FLAVOR*} $errorMsg]} {
 append logMsg "badFlavor {$errorMsg} $username $method"
 set httpStatusCode 400
 } elseif {[string match -nocase {INVALID_ARGUMENT*} $errorMsg]} {
 append logMsg "invalidArgument {$errorMsg} $username $method"
 set httpStatusCode 400
 } elseif {[string match -nocase {NO_DATA*} $errorMsg]} {
 append logMsg "noData {$errorMsg} $username $method"
 } elseif {[string match -nocase {APP_FAULT*} $errorMsg]} {
 set httpStatusCode 500
 append logMsg "appFault {$errorMsg} $username $method"
 } else {
 append logMsg "unknownError {$errorMsg} $username $method"
 set httpStatusCode 500
 }

 ::flightxml::udp_error_logging $logMsg
} 	

Figure	9	-	FlightXML3	error	callback	handler	

