
Rediscovering Ousterhout’s Dichotomy in the 21st
Century while Developing and Deploying Software for
Set-Theoretic Empirical Analysis:

From R to Python/Qt to OCaml and Tcl/Tk

Claude Rubinson
University of Houston—Downtown

rubinsonc@uhd.edu

26th Annual Tcl/Tk Conference
Houston, TX

November 7, 2019

Funding support:
UHD Organized & Creative Activities Award, 2019

[I propose that] you should use two languages for a large
software system: one, such as C or C++, for manipulating
the complex internal data structures where performance is
key and another, such as Tcl, for writing small-ish scripts
that tie together the C pieces and are used for extensions.
For the Tcl scripts, ease of learning, ease of performance
and ease of glue-ing are more important than performance
or facilities for complex data structures and algorithms.
I think these two programming environments are so
different that it will be hard for a single language to work
well in both.

— Ousterhout, 1994

“

”

...Prickly theoreticians seek to understand the world through the
abstractions of thought, whereas gooey empiricists return
ceaselessly to the real world for the ever-more-refined data that
methodical experimentation can yield. The complementarity of
the two approaches is widely recognized by scientists themselves.
A constant dialectic between empiricism and theory is generally
seen to promote the integrity and health of scientific inquiry.

 More recently, the advent of computer programming has
brought with it a new round in the prickly-gooey dialectic. By
temperament, there seem to be two types of programmers, which
I will call the planners and the doers.

— Flynt, 2012

“

”

Inductive/Deductive Knowledge Creation

● a posteriori knowledge, via observation
– inductive research
– Flynt’s “gooey doers”

● a priori knowledge, via logical reasoning
– deductive research
– Flynt’s “prickly planners”

Domain Type

Domain
Familiarity

Application
(Inductive exploration)

Analytic
(Deductive reasoning)

Known
Scripting

DSL or
System Programming

(e.g., DDD) (e.g., TDD)

Unknown
Scripting System Programming

(e.g., Agile)

Programming Languages, Domain Characteristics, and Development Strategies

Programming as Knowledge Creation

● Scripting complements inductive reasoning
– goal: model an application domain to solve an existing problem
– encourages: rapid acquisition of needed knowledge; quick and

regular feedback from stakeholders
– prioritizes: ease and speed of writing and deploying code

● Systems programming complements deductive reasoning
– goal: develop a coherent model (algebra) of an analytic domain
– encourages: deep understanding of abstract entities and their

relationships with one another; casing practices
– prioritizes: developing semantically meaningful abstractions;

avoiding logical (syntactic) errors

Qualitative Comparative Analysis (QCA)

● A configurational-comparative methodology
that uses set theory and Boolean algebra to
investigate multiple conjunctural causation

● Software design goals:
– Explore/develop QCA methodology

(analytic domain)
– Identify effective ways of conducting QCA

(application domain)

The real problem is that programmers have spent far too much
time worrying about efficiency in the wrong places and at the
wrong times; premature optimization is the root of all evil (or at
least most of it) in programming.

 — Knuth, 1974

...the only downside to Python I’ve found is that, as currently
implemented, its execution speed may not always be as fast as
that of compiled languages...
 As a general-purpose programming language, Python’s roles
are virtually unlimited: you can use it for everything from website
development and gaming to robotics and spacecraft control.

 — Lutz, 2009

“

”

Prior Implementations of QCA Software
R (ca. 2006)

– Poor performance; R programming “considered harmful”
– But: helped me realize that UI should be task-oriented

Python (ca. 2009–17)
● Two versions: acq (Unix CLI) & Kirq (crossplatform GUI)
● Advantages:

– Compared to R, lower SLOC with comparable functionality and better performance
– Core language is relatively compact, with large standard library
– Strong, well-developed environment of GUI toolkits, installers, etc

● Disadvantages:
– Out-of-box performance often still too slow; optimization can be difficult
– Low SNR online; insular community overly concerned with “idiomatic Python”
– Bit rot and package churn hurts maintenance and distribution (especially Win10;

see also: Python3)

OCaml & Tcl/Tk (2017–present)

Analytic domain (OCaml)
● Libraries of QCA data structures and algorithms
● Basic CLI interfaces
● Easy distribution by building platform-specific executables

Application domain (Tcl/Tk)
● User-interface(s)
● Data management and transformation
● Session history/management
● Crossplatform persistence layer (SQLite)
● Easy distribution by building crossplatform executables

Algebraic Data Types:
Easily express complex and recursive data structures
● Product types (tuples and records)

– type fzvar = string * Fuzzy.t list
– type qcadata = {obs: string list;
 vars: fzvar list;
 directives: string list}

● Sum types (variant/discriminated union)
– enum that optionally carries a payload
– type bexp =
 Atom of atom
 | Not of bexp
 | And of bexp * bexp
 | Or of bexp * bexp

Algebraic Data Types:
Process (deconstruct) using pattern matching
● The structure of your function matches the structure of your data
● Type checking prevents omitting a case
● Recursive application is straightforward

– (* apply De Morgan's laws to push negations in until they only apply to
literals, so that statement consists only of literals, conjunctions, and
disjunctions *)

let rec nnf = function
 Atom a -> Atom a

 | Not (Atom a) -> Atom (neg_atom a)
 | Not (Not a) -> nnf a
 | Not (And (a,b)) -> Or (nnf (Not a), nnf (Not b))
 | Not (Or (a,b)) -> And (nnf (Not a), nnf (Not b))
 | And (a,b) -> And (nnf a, nnf b)
 | Or (a,b) -> Or (nnf a, nnf b)
val nnf : bexp → bexp

Hindley-Milner Type Inference
● Consistent & Complete

– Type checks entire program during compilation

● Supports parametric polymorphism
– Type checking of abstract functions and types
– Eliminates run-time type errors for pure functions

● Extensible
– Haskell’s type classes and Ocaml/SML module system

● Infers most general (principle) type
● (* p is a subset of q when p*~q = 0 *)
let is_subset p q =

is_contradiction (And(p, Not q))
val is_subset : bexp → bexp → bool

Analytic Domain:
Symbolic Boolean Algebra
● Strengthens and makes explicit the set-

theoretic foundation of QCA
– Boolean expressions may be arbitrarily complex
– Encourages analysis of complex sets, rather than

individual conditions and outcomes

● Boolean expressions may be associated with
particular constraints
– Impossible conjunctions
– Theoretical/empirical expectations

(* file: bexp.ml *)
type atom =
 Yes of string
| No of string
| Dc of string
| Imp of string
| One
| Zero

type bexp =
 Atom of atom
| Not of bexp
| And of bexp * bexp
| Or of bexp * bexp

let neg_atom = function
 Yes a -> No a
 | No a -> Yes a
 | One -> Zero
 | Zero -> One
 | a -> a
val neg_atom : atom → atom

(* boolean negation *)
let rec bnot = function
 Atom a -> Atom (neg_atom a)
| Not a -> a
| And (a,b) -> Or (bnot a, bnot b)
| Or (a,b) -> And (bnot a, bnot b)
val bnot : bexp → bexp

(* distributive laws for boolean
 multiplication/addition *)
let rec band p q =
 match (p,q) with
 a, Or (b,c) | Or (b,c), a ->
 Or(band a b, band a c)
 | a,b -> And (a,b)
val band : bexp → bexp → bexp

let rec bor p q =
 match (p,q) with
 a, And (b,c) | And (b,c), a ->
 And(bor a b, bor a c)
 | a,b -> Or (a,b)
val bor : bexp → bexp → bexp

Analytic Domain:
Modeling Missing Data
● QCA currently accommodates missing data only via

listwise deletion
● Can extend QCA’s conventional 2-valued Boolean logic

to a 4-valued logic (cf., Codd’s RM/V2)
– Two forms of missing data: unknown values and

inapplicable values
– 4VL allows calculation of “maybe” and “impossible” set

relationships; provides foundation for supervaluation
– Because 4VL complexity taints the entire program

(McGoveran 1994), type inference becomes crucial for
avoiding logical errors (cf., truthy/falsey values)

(* file: fuzzy.ml *)
module Fznum = struct
 type t =
 Unk
 | Iap
 | Fz of float

 let fznot = function
 Fz a -> Fz (1. -. a)
 | Unk -> Unk
 | Iap -> Iap
 val fznot : t → t

 let fzand p q =
 match (p,q) with
 Fz a, Fz b -> Fz (min a b)
 | Fz 0.0, _ -> Fz 0.0
 | _, Fz 0.0 -> Fz 0.0
 | _, Iap -> Iap
 | Iap, _ -> Iap
 | _, Unk -> Unk
 | Unk, _ -> Unk
 val fzand : t → t → t

 let fzor p q =
 match (p,q) with
 Fz a, Fz b -> Fz (max a b)
 | Fz 1., _ -> Fz 1.
 | _, Fz 1. -> Fz 1.
 | _ , Unk -> Unk
 | Unk, _ -> Unk
 | Iap, Iap -> Iap
 | Fz a, Iap -> Fz a
 | Iap, Fz a -> Fz a
 val fzor : t → t → t
end

module Fzset = struct
 type t = Fznum.t list

 let fsnot p = List.map Fznum.fznot p
 val fsnot : Fznum.t list → Fznum.t list

 let fsand p q = List.map2 Fznum.fzand p q
 val fsand : Fznum.t list → Fznum.t list → Fznum.t list

 let fsor p q = List.map2 Fznum.fzor p q
 val fsor : Fznum.t list → Fznum.t list → Fznum.t list
end

Application Domain:
UIs that encourage retroductive, interrogative analysis
● Extended Tcl console

– Tcl provides general computing environment for
● data management/transformation, math & statistics, etc.
● calling out to external programs

– Adds commands for conducting QCA
– Also provides venue for procedures that are

● infrequently used,
● exploratory/under development, or
● don’t (yet) fit into the GUI’s model

● Tk GUI
– Spawned from Tcl console (permits bi-directional communication)
– User-friendly but opinionated
– Easy to maintain and modify

Application Domain:
Incorporation of Multivalued Sets

● Multivalued sets permit >2 states per condition
● Tcl for representing/manipulating data sets
● Convert multivalued set to series of (disjoint)

crisp sets and defining derived conjunctions as
impossible:
– party{dem, rep, ind} →

d{0,1}; r{0,1}; i{0,1} + Imp{d&r, d&i, r&i}

● Convert between multivalued and conventional
notation(s)

Implications:
The Continuing Relevance of Ousterhout’s Dichotomy
● Scripting and system programming languages have distinct capabilities,

not just for gluing versus writing components as Ousterhout argued but
also for conducting inductive versus deductive research.

● The contemporary prioritization of scripting languages above system
programming languages is therefore problematic.
– A mismatch between the type of research and one’s choice of language can hinder

knowledge acquisition.
– Especially pernicious is the contention that a single scripting (or DSL) language

such as Python or R is sufficiently general to meet all needs.

● And yet, scripting languages are indeed more accessible, especially for
researchers, who are often casual programmers. How to address?
– Maintain conventional split between researcher and programmer.
– Continued work on both DSLs and “high level” system programming languages.
– Distinguish between “gooey doing” and “prickly planning” activities.

I hope that programmers will consider the
differences between scripting and system
programming when starting new projects and
choose the most powerful tool for each task.

 — Ousterhout, 1998

Program close to the problem domain.

 — Hunt and Thomas, 2000

“

”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

