
The TclHttpd Web Server

Brent Welch <welch@scriptics.com>
Scriptics Corporation

Abstract

This paper describes TclHttpd, a web server built
entirely in Tcl. The web server can be used as a
stand-alone server or it can be embedded into
applications to web-enable them. TclHttpd provides
a Tcl+HTML template facility that is useful for
maintaining site-wide look and feel, and an appli-
cation-direct URL that invokes a Tcl procedure in
an application. This paper describes the architec-
ture of the application and relates our experience
using the system to host www.scriptics.com.

Introduction

TclHttpd started out as about 175 lines of Tcl that
could serve up HTML pages and images. The Tcl
socket and I/O commands make this easy. Of
course, there are lots of features in web servers like
Apache or Netscape that were not present in the
first prototype. Steve Uhler took my prototype,
refined the HTTP handling, and aimed to keep the
basic server under 250 lines. I went the other direc-
tion, setting up a modular architecture, adding in
features found in other web servers, and adding
some interesting ways to connect TclHttpd to Tcl
applications.

Today TclHttpd is used both as a general-purpose
Web server, and as a framework for building server
applications. It implements www.scriptics.com,
including the Tcl Resource Center and Scriptics’
electronic commerce facilities. It is also built into
several commercial applications such as license
servers and mail spam filters.

Integrating with TclHttpd

TclHttpd is interesting because, as a Tcl script, it is
easy to add to your application. Suddenly your
application has an interface that is accessible to
Web browsers in your company’s intranet or the
global Internet. The Web server provides several
ways you can connect it to your application:

• Static pages. As a "normal" web server, you
can serve static documents that describe your
application.

• Domain handlers. You can arrange for all
URL requests in a section of your web site to
be handled by your application. This is a very
general interface where you interpret what the
URL means and what sort of pages to return
to each request. For example,
http://www.scriptics.com/resource is
implemented this way. The URL past
/resource selects an index in a simple data-
base, and the server returns a page describing
the pages under that index.

• Application-Direct URLs. This is a domain
handler that maps URLs onto Tcl procedures.
The form query data that is part of the HTTP
GET or POST request is automatically
mapped onto the parameters of the applica-
tion-direct procedure. The procedure simply
computes the page as its return value. This is
an elegant and efficient alternative to the CGI
interface. For example, in TclHttpd the URLs
under /status report various statistics about
the web server’s operation.

• Document handlers. You can define a Tcl pro-
cedure that handles all files of a particular
type. For example, the server has a handler
for CGI scripts, HTML files, image maps,
and HTML+Tcl template files.

• HTML+Tcl Templates. These are web pages
that mix Tcl and HTML markup. The server
replaces the Tcl using the subst command
and returns the result. The server can cache
the result in a regular HTML file to avoid the
overhead of template processing on future
requests. Templates are a great way to main-
tain common look and feel to a family of web
pages, as well as to implement more
advanced dynamic HTML features like self-
checking forms.

TclHttpd Architecture

Figure 1 shows the basic components of the server.
At the core is the Httpd module, which implements
the server side of the HTTP protocol. This module
manages network requests, dispatches them to the
Url module, and provides routines used to return
the results to requests. The Url module divides the
web site into domains, which are subtrees of the
URL hierarchy provided by the server. The idea is
that different domains may have completely differ-
ent implementations. For example, the Document
domain maps its URLs into files and directories on
your hard disk, while the Application-Direct
domain maps URLs into Tcl procedure calls within
your application. The CGI domain maps URLs onto
other programs that compute web pages.

Domain Handlers

You can implement new kinds of domains that pro-
vide your own interpretation of a URL. This is the
most flexible interface available to extend the web
server. You provide a callback that is invoked to
handle every request in a domain, or subtree, of the
URL hierarchy. The callback interprets the URL,
using routines from the Httpd module.

Example 1 defines a simple domain that always
returns the same page to every request. The domain
is registered with the Url_PrefixInstall com-
mand. The arguments to Url_PrefixInstall are
the URL prefix and a callback that is called to han-
dle all URLs that match that prefix. In the example,
all URLs that have the prefix /simple are dis-
patched to the SimpleDomain procedure.

Httpd

Url

Application
CGI

File

Your Application

Other
ApplicationsSystem

Direct

Figure 1 The dotted box represents one application that embeds TclHttpd. Document templates
and Application Direct URLs provide direct connections from an HTTP request to your applica-
tion.

TclHttpd

Templates

Documents

Example 1 A simple URL domain.

Url_PrefixInstall /simple [list SimpleDomain /simple]

proc SimpleDomain {prefix sock suffix} {
upvar #0 Httpd$sock data

Generate page header

set html "<title>A simple page</title>\n"
append html "<h1>$prefix$suffix</h1>\n"
append html "<h1>Date and Time</h1>\n"
append html [clock format [clock seconds]]
Display query data

if {[info exist data(query)]} {
append html "<h1>Query Data</h1>\n"
append html "<table>\n"
foreach {name value} [Url_DecodeQuery $data(query)] {

append html "<tr><td>$name</td>\n"
append html "<td>$value</td></tr>\n"

}
append html "</table>\n"

}
Httpd_ReturnData $sock text/html $html

}

The SimpleDomain handler illustrates several prop-
erties of domain handlers. The sock and suffix
arguments to SimpleDomain are appended by
Url_Dispatch when it invokes the domain handler.
The suffix parameter is the part of the URL after
the prefix. The prefix is passed in as part of the
callback definition so the domain handler can recre-
ate the complete URL. For example, if the server
receives a request for the url /simple/page, then
the prefix is /simple, the suffix is /page.

The sock parameter is a handle on the socket con-
nection to the remote client. This variable is also
used to name a state variable that the Httpd module
maintains about the connection. The name of the
state array is Httpd$sock, and SimpleDomain uses
upvar to get a more convenient name for this array
(i.e., data):
upvar #0 Httpd$sock data

The only module in the server that uses the socket
handle directly is the Httpd module. The rest of the
code treats $sock as an opaque handle, and uses the
upvar trick to map that handle into a locally acces-
sible array.

An important element of the state array is the query
data, data(query). This is the information that
comes from HTML forms. The query data arrives in
an encoded format, and the Url_DecodeQuery pro-

cedure is used to decode the data into a list of names
and values.

Finally, once the page has been computed, the
Httpd_ReturnData procedure is used to return the
page to the client. This takes care of the HTTP pro-
tocol as well as returning the data. There are three
related procedures, Httpd_ReturnFile,
Httpd_Error, and Httpd_Redirect.

Application Direct URLs

The Application Direct domain implementation
provides the simplest way to extend the web server.
It hides the details associated with query data,
decoding URL paths, and returning results. All you
do is define Tcl procedures that correspond to
URLs. Their arguments are automatically matched
up to the query data. The Tcl procedures compute a
string that is the result data, which is usually
HTML. That’s all there is to it.

The Direct_Url procedure defines a URL prefix
and a corresponding Tcl command prefix. Any
URL that begins with the URL prefix will be han-
dled by a corresponding Tcl procedure that starts
with the Tcl command prefix. This is shown in
Example 2:

Example 2 Application Direct URLs

Direct_Url /demo Demo

proc Demo {} {
return "<html><head><title>Demo page</title></head>\n\

<body><h1>Demo page</h1>\n\
What time is it?\n\
<form action=/demo/echo>\n\
Data: <input type=text name=data>\n\

\n\
<input type=submit name=echo value=’Echo Data’>\n\
</form>\n\
</body></html>"

}
proc Demo/time {{format "%H:%M:%S"}} {

return [clock format [clock seconds] -format $format]
}
proc Demo/echo {args} {

Compute a page that echos the query data

set html "<head><title>Echo</title></head>\n"
append html "<body><table>\n"
foreach {name value} $args {

append html "<tr><td>$name</td><td>$value</td></tr>\n"
}
append html "</tr></table>\n"
return $html

}

Example 2 defines /demo as an Application Direct
URL domain that is implemented by procedures
that begin with Demo. There are just three URLs
defined:

/demo
/demo/time
/demo/echo

The /demo page displays a hypertext link to the
/demo/time page, and a simple form that will be
handled by the /demo/echo page. This page is
static, and so there is just one return command in
the procedure body.

The /demo/time procedure just returns the result of
clock format. It doesn’t even bother adding
<html>, <head>, or <body> tags, which you can get
away with in today’s browsers. A simple result like
this is also useful if you are using programs to fetch
information via HTTP requests. The /demo/time
procedure is defined with an optional format argu-
ment. If a format value is present in the query data
then it overrides the default value given in the pro-
cedure definition.

Using Query Data

The /demo/echo procedure creates a table that
shows its query data. Its args parameter gets filled
in with a name-value list of all query data. You can
have named parameters, named parameters with
default values, and the args parameter in your
application-direct URL procedures. The server
automatically matches up incoming form values
with the procedure declaration. For example, sup-
pose you have an application direct procedure
declared like this:
proc Demo/param { a b {c cdef} args} body

You could create an HTML form that had elements
named a, b, and c, and specified /demo/param for
the ACTION parameter of the FORM tag. Or, you could
type the following into your browser to embed the
query data right into the URL:
/demo/param?a=5&b=7&c=red&d=%7ewelch&e=tw
o+words

In this case, when your procedure is called, a is 5, b
is 7, c is red, and the args parameter becomes a list
of:
d ~welch e {two words}

Returning Other Content Types

The default content type for application direct
URLs is text/html. You can specify other content
types by using a global variable with the same name
as your procedure. (Yes, this is a crude way to craft
an interface.) Example 3 shows part of the
faces.tcl file that implements an interface to a
database of picons, or personal icons, that is orga-
nized by user and domain names. The idea is that
the database contains images corresponding to your
email correspondents. The Faces_ByEmail proce-
dure, which is not shown, looks up an appropriate
image file. The application direct procedure is
Faces/byemail, and it sets the global variable
Faces/byemail to the correct value based on the
filename extension. This value is used for the Con-
tent-Type header in the result part of the HTTP pro-
tocol.

Document Types

The Document domain (doc.tcl) maps URLs onto
files and directories. It provides more ways to
extend the server by registering different document
type handlers. This occurs in a two step process.
First the type of a file is determined by its suffix.
The mime.types file contains a map from suffixes
to MIME types such as text/html or image/gif.
This map is controlled by the Mtype module in
mtype.tcl. Second, the server checks for a Tcl
procedure with the appropriate name:
Doc_mimetype

The matching procedure, if any, is called to handle
the URL request. The procedure should use routines
in the Httpd module to return data for the request.
If there is no matching Doc_mimetype procedure,
then the default document handler uses
Httpd_ReturnFile and specifies the Content Type
based on the file extension:
Httpd_ReturnFile $sock [Mtype $path] $path

Example 3 Alternate types for Application Direct URLs.

Direct_Url /faces Faces
proc Faces/byemail {email} {

global Faces/byemail
set filename [Faces_ByEmail $email]
set Faces/byemail [Mtype $filename]
set in [open $filename]
fconfigure $in -translation binary
set X [read $in]
close $in
return $X

}

Example 4 A sample document type handler.

Add this line to mime.types
application/myjunk .junk

Define the document handler procedure
path is the name of the file on disk
suffix is part of the URL after the domain prefix
sock is the handle on the client connection

proc Doc_application/myjunk {path suffix sock} {
upvar #0 Httpd$sock data
data(url) is more useful than the suffix parameter.

Use the contents of file $path to compute a page
set contents [somefunc $path]

Determine your content type
set type text/html

Return the page
Httpd_ReturnData $sock $type $data

}

You can make up new types to support your appli-
cation. Example 4 shows the pieces need to create a
handler for a fictitious document type applica-
tion/myjunk that is invoked to handle files with the
.junk suffix. You need to edit the mime.types file
and add a document handler procedure to the
server:

As another example, the HTML+Tcl templates use
the .tml suffix that is mapped to the applica-
tion/x-tcl-template type. The TclHttpd distri-
bution also includes support for files with a .snmp
extension that implement a template-based web
interface to the Scotty SNMP Tcl extension.

HTML + Tcl Templates

The template system uses HTML pages that embed
Tcl commands and Tcl variable references. The
server replaces these using the subst command
and returns the results. The server comes with a
general template system, but using subst is so easy
you could create your own template system. The
general template framework has these components:

• Each .html file has a corresponding .tml
template file. This feature is enabled with the
Doc_CheckTemplates command in the
server’s configuration file. Normally, the
server returns the .html file unless the corre-
sponding .tml file has been modified more
recently. In this case the server processes the
template, caches the result in the .html file,
and returns the result.

• A dynamic template (e.g., a form handler)
must be processed each time it is requested. If
you put the Doc_Dynamic command into your
page it turns off the caching of the result in
the .html page. The server responds to a
request for a .html page by processing the
.tml page. Or, you can just reference the
.tml file directly, in which case the server
always processes the template.

• The server creates a page global Tcl variable
that has context about the page being pro-
cessed.

• The server initializes the env global Tcl vari-
able with similar information, but in the stan-
dard way for CGI scripts.

• The server supports per-directory ".tml" files

that contain Tcl source code. These files are
designed to contain procedure definitions and
variable settings that are shared among pages.
The name of the file is simply ".tml", with
nothing before the period. The server will
source the ".tml" files in all directories lead-
ing down to the directory containing the tem-
plate file. The server compares the modify
time of these files against the template file
and will process the template if these ".tml"
files are newer than the cached .html file. So,
by modifying the ".tml" file in the root of
your URL hierarchy you invalidate all the
cached .html files.

• The server supports a script library for the
procedures called from templates. The
Doc_TemplateLibrary procedure registers
this directory. The server adds the directory to
its auto_path, which assumes you have a
tclIndex or pkgIndex.tcl file in the direc-
tory so the procedures are loaded when
needed.

Where to put your Tcl Code

There are three places you can put the code of your
application: directly in your template pages, in the
per-directory ".tml" files, or in the library direc-
tory. The advantage of putting procedure definitions
in the library is that they are defined one time but
executed many times. This works well with the Tcl
byte-code compiler. The disadvantage is that if you
modify procedures in these files you have to explic-
itly source them into the server for these changes to
take effect. A built-in URL makes this possible. The
/debug/source URL accepts a source parameter
that indicates what file to load. For safety reasons,
it only loads files from the script library directory.

The advantage of putting code into the per-directory
".tml" files is that changes are picked up immedi-
ately with no effort on your part. The server auto-
matically checks if these files are modified, and
sources them each time it processes your templates.
However, that code is only run one time, so the
byte-code compiler just adds overhead. In general,
I try to limit the code in the actual pages to simple
procedure calls. Complex code directly in pages
cannot be shared, and is more awkward to edit.

Form Handlers

TclHttpd provides alternatives to CGI that are more
efficient because they are built right into the server.
This eliminates the overhead that comes from run-
ning an external program to compute the page.
Another advantage is that the Web server can
maintain state between client requests in Tcl vari-
ables. If you use CGI, you must use some sort of
database or file storage to maintain information
between requests.

Application Direct Handlers

The server comes with several built-in forms han-
dlers that you can use with little effort. The
/mail/forminfo URL will package up the query
data and mail it to you. You use form fields to set
various mail headers, and the rest of the data is
packaged up into a Tcl-readable mail message.
Example 5 shows a form that uses this handler.

The mail message sent by /mail/forminfo is
shown in Example 6.

It is easy to write a script that strips the headers,
defines a data procedure, and uses eval to process

the message body. Whenever you send data via
email, if you format it with Tcl list structure you can
process it quite easily.

Template Form Handlers

The drawback of using application-direct URL
form handlers is that you have to modify their Tcl
implementation to change the resulting page.
Another approach is to use templates for the result
page that embed a command that handles the form
data. The Mail_FormInfo procedure, for example,
mails form data. It takes no arguments. Instead, it
looks in the query data for sendto and subject val-
ues, and if they are present it sends the rest of the
data in an email. It returns an HTML comment that
flags that mail was sent.

A self-posting form is a form that posts the form
data to back to the page containing the form. The
page embeds a Tcl command to check its own form
data. Once the data is correct the page triggers a
redirect to the next page in the flow. This is a pow-
erful trick, which I learned from Monty Swiryn of
Cuesta Technologies, that you can use to create
complex page flows using templates.

Example 5 Mail form results with /mail/forminfo.

<form action=/mail/forminfo method=post>
<input type=hidden name=sendto value=mailreader@my.com>
<input type=hidden name=subject value="Name and Address">
<table>

<tr><td>Name</td><td><input name=name></td></tr>
<tr><td>Address</td><td><input name=addr1></td></tr>
<tr><td> </td><td><input name=addr2></td></tr>
<tr><td>City</td><td><input name=city></td></tr>
<tr><td>State</td><td><input name=state></td></tr>
<tr><td>Zip/Postal</td><td><input name=zip></td></tr>
<tr><td>Country</td><td><input name=country></td></tr>

</table>
</form>

Example 6 Mail message sent by /mail/forminfo

To: mailreader@my.com
Subject: Name and Address

data {
name {Joe Visitor}
addr1 {Acme Company}
addr2 {100 Main Street}
city {Mountain View}
state California
zip 12345
country USA

}

Of course, you need to save the form data at each
step. You can put the data in Tcl variables, use the
data to control your application, or store it into a
database. TclHttpd comes with a Session module
that is one way to manage this information.

Example 7 shows the Form_Simple procedure that
generates a simple self-checking form. Its argu-
ments are a unique id for the form, a description of
the form fields, and the URL of the next page in the
flow. The field description is a list with three ele-
ments for each field: a required flag, a form element

name, and a label to display with the form element.
You can see this structure in the template shown in
Example 8 on page 9. The procedure does two
things at once. It computes the HTML form, and it
also checks if the required fields are present. It uses
some procedures from the form module, which is
described on page 9, to generate form elements that
retain values from the previous page. If all the
required fields are present, it discards the HTML,
saves the data, and triggers a redirect by calling
Doc_Redirect.

Example 7 A self-checking form procedure.

proc Form_Simple {id fields nextpage} {
global page
if {![form::empty formid]} {

Incoming form values, check them
set check 1

} else {
First time through the page
set check 0

}
set html "<!-- Self-posting. Next page is $nextpage -->\n"
append html "<form action=\"$page(url)\" method=post>\n"
append html "<input type=hidden name=formid value=$id>\n"
append html "<table border=1>\n"
foreach {required key label} $fields {

append html "<tr><td>"
if {$check && $required && [form::empty $key]} {

lappend missing $label
append html "*"

}
append html "</td><td>$label</td>\n"
append html "<td><input [form::value $key]></td>\n"
append html "</tr>\n"

}
append html "</table>\n"
if {$check} {

if {![info exist missing]} {

No missing fields, so advance to the next page.
In practice, you must save the existing fields
at this point before redirecting to the next page.

Doc_Redirect $nextpage
} else {

set msg "Please fill in "
append msg [join $missing ", "]
append msg ""
set html <p>$msg\n$html

}
}
append html "<input type=submit>\n</form>\n"
return $html

}

Example 8 A page with a self-checking form.

<html><head>
<title>Name and Address Form</title>

</head>
<body bgcolor=white text=black>

<h1>Name and Address</h1>
Please enter your name and address.
[myform::simple nameaddr {

1 name "Name"
1 addr1 "Address"
0 addr2" "Address"
1 city "City"
0 state "State"
1 zip "Zip Code"
0 country "Country"

} nameok.html]
</body></html>

Example 8 shows a page template that calls Form_Simple with the required field description.

The form package

TclHttpd comes with a form package that is
designed to support self-posting forms. The
Form_Simple procedure uses form::empty to test if
particular form values are present in the query data.
The form::value procedure is useful for construct-
ing form elements on self-posting form pages. It
returns:
name="name" value="value"

The value is the value of form element name based
on incoming query data, or just the empty string if
the query value for name is undefined. This way the
form can post to itself and retain values from the
previous version of the page. It is used like this:
<input type=text [form::value name]>

The form::checkvalue and form::radiovalue
procedures are similar to form::value but
designed for checkbuttons and radio buttons. The
form::select procedure formats a selection list
and highlights the selected values. The form::data
procedure simply returns the value of a given form
element.

Experiences with the Server

I have used TclHttpd on two main servers, sun-
script.sun.com and www.scriptics.com, and many
internal web sites. During a recent week,
www.scriptics.com got over 18,000 home page
hits, over 200,000 HTTP requests, over 4 gigabytes
of data transferred, and over 26,000 page views in
the Tcl Resource Center. If you visit

http://www.scriptics.com/status you can get a live
view of the statistics. This page shows per-minute
hit rates over the last hour, per hour hit rates over
the last day, and daily hit rates since the server was
started. These "hits" are URL requests, which are
larger than the number of page views because of
images on a page. This traffic is high compared to
an average companies site, but low compared to a
large portal site.

The current per-minute rates are 100 to 200
hits/minute. Previously it was as high as 500
hits/minute due to the large number of images on
our pages. We recently split the image traffic to
another web server. On two occasions a bug in the
server trapped a remote client by accidentally redi-
recting it to the same page that the client was
requesting. This caused the client to fetch the same
page again and again. When this happened, I
observed sustained per-minute hit rates of over 700
hits/minute. Both problems were fixed by loading
an explicit redirect that aimed the client at the page
they really wanted; it did not require a server restart.

I performed some basic comparisons of servers on
a test network of four machines on 100Mbit ether-
net. The machines were a dual-processor Sparc-20
running at 75 MHz, an Ultra-5 Sparc running at 270
Mhz, a Pentium II running Linux at 400 MHz, and
a Pentium III running Windows NT at 450 MHz.
TclHttpd was run on all platforms, while Apache,
Netscape, AOLserver, and IIS were run on a subset
of the platforms. No performance tuning was done
on any of the servers.

The test simply performs a number of HTTP

requests to various URLs: a URL implemented by a
simple Tcl procedure, a small image, a medium
sized image, and a large image.

Three charts are shown in the appendix. The Dell-
450 chart shows the performance of TclHttpd and
IIS on the fastest machine. TclHttpd adds overhead
that is relatively high for small transfers (about 3.5
msec vs 12.5 msec for 200 bytes) and less so for big
transfers (about 23 msec vs 37 for 120K.) The
Dynamic Pages chart shows the performance of
dynamic pages. This shows the obvious benefit of
building page generation right into the server. The
fastest is AOLserver at about 8 msec. The mod_tcl
plugin for Apache was close behind at 11 msec.
TclHttpd was about 23 msec, and CGI from Apache
was about 72 msec. The 32 Kbyte chart compares
the time for all different servers to deliver a
32Kbyte image. TclHttpd runs from 2 to 3 times
slower than the fastest server on the platform for
this sized transfer.

Perhaps the most notable experience from using
TclHttpd on www.scriptics.com is that it is
extremely robust. The server is a Sparc-20 running
Solaris 2.5.1, and in a two year period I experienced
one OS crash, and two or three occasions where I
was forced to reboot the machine for various
administrative reasons. Tcl, of course, never
crashed, so TclHttpd ran for months at a time.

The other exciting thing about TclHttpd is the abil-
ity to modify the application without restarting the
server. In the early days at sunscript.sun.com I fixed
various bugs in the core TclHttpd code. It is more
common that the bug fixes are in various the form
handlers we have at www.scriptics.com. When a
page generates a Tcl error, an error page is dis-
played in the browser. This contains a form with
two options: view the errorInfo from the error, or
mail that information to webmaster@scrip-

tics.com. Of course, TclHttpd continues to func-
tion. We can usually diagnose the problem quickly
just by looking at errorInfo. For difficult bugs we
start another copy of the server and connect to it
remotely with TclPro Debugger. Once the bug is
fixed we simply load new code into the server to fix
the problem. One danger of continuously modify-
ing the server is that you can have a server that is
running fine but cannot be restarted because of bugs
in the startup code. After significant server changes
I either restart the server or test the startup sequence

by starting the application on a different port.

There have been many applications of TclHttpd as
an embedded server. We use it for the Scriptics
License Server that implements our shared licences
for TclPro.

Current work on TclHttpd includes exploiting the
threading capabilities of Tcl 8.2. A threaded server
can eliminate the need to use CGI for long-running
template code. In addition, Matt Newman has used
the built-in stacked channel support in Tcl 8.2 to
create a clean SSL extension to the server.

Related Work

There are a number of other interesting Tcl-based
Web servers. Karl Lehenbaur presented a paper on
the NeoWebScript Apache plugin in an earlier
Tcl/Tk conference. David Welton wrote the
mod_dtcl plugin for Apache. Probably the most
mature Tcl-based web server is the AOLserver.
This has used a multi-threaded version of Tcl for
some time: first 7.4, then 7.6, and now 8.2. All of
these support HTML+Tcl templates, although the
syntax used to embed Tcl on the page varies some-
what from server to server.

What makes TclHttpd novel is the ability to embed
the server into another application. The event-based
model simplifies the integration of the server into
the application. In contrast, an Apache or IIS plugin
is forced to deal with the multi-process or multi-
thread architecture of the hosting web server. Once
you have embedded TclHttpd, you have a variety of
ways to integrate it with your application, including
Application-Direct URLs, custom domain handlers,
document handlers, and dynamic page templates.

Web Links

The TclHttpd home page:
http://www.scriptics.com/products/tclht-
tpd/

The AOLserver home page:
http://www.aolserver.com/

The mod_dtcl home page:
http://comanche.com.dtu.dk/dave/

The NeoWebScript home page:
http://www.NeoSoft.com/neowebscript/

Appendix A: Templates for Site Struc-
ture

This appendix shows a simple template system
used to maintain a common look at feel across the
pages of a site. Example 9 shows a simple one-
level site definition that is kept in the root .tml file.
This structure lists the title and URL of each page
in the site:

Each page includes two commands, SitePage and
SiteFooter that generate HTML for the naviga-
tional part of the page. Between these commands is
regular HTML for the page content. Example 10
shows a sample template file:

The SitePage procedure takes the page title as an
argument. It generates HTML to implement a stan-
dard navigational structure. Example 11 has a sim-
ple implementation of SitePage:

The foreach loop that computes the simple menu
of links turns out to be useful in many places.
Example 12 splits out the loop and uses it in the
SitePage and SiteFooter procedures. This ver-

sion of the templates creates a left column for the
navigation and a right column for the page content:

Of course, a real site will have more elaborate
graphics and probably a two-level, three-level, or
more complex tree structure that describes its struc-
ture.You can also define a family of templates so
that each page doesn’t have to fit the same mold.
Once you start using templates, it is fairly easy to
change both the template implementation and to
move pages around among different sections of
your web site.

There are many other applications for "macros" that
make repetitive HTML coding chores easy. Take,
for example, the link to /ordering.html in Exam-
ple 10. The proper label for this is already defined
in $site(pages), so we could introduce a
SiteLink procedure that uses this:

If your pages embed calls to SiteLink, then you
can change the URL associated with the page name
by changing the value of site(pages). If this is
stored in the top-level ".tml" file, the templates
will automatically track the changes.

Example 9 A one-level site structure.

set site(pages) {
Home /index.html
"Ordering Computers"/ordering.html
"New Machine Setup" /setup.html
"Adding a New User" /newuser.html
"Network Addresses" /network.html

}

Example 10 A HTML + Tcl template file.

[SitePage "New Machine Setup"]
This page describes the steps to take when setting up a new
computer in our environment. See
Ordering Computers
for instructions on ordering machines.

Unpack and setup the machine.
Use the Network control panel to set the IP address
and hostname.
<!-- Several steps omitted -->
Reboot for the last time.

[SiteFooter]

Example 11 SitePage template procedure. Simple horizontal menu along the top of the page.

proc SitePage {title} {
global site
set html "<html><head><title>$title</title></head>\n"
append html "<body bgcolor=white text=black>\n"
append html "<h1>$title</h1>\n"
set sep ""
foreach {label url} $site(pages) {

append html $sep
if {[string compare $label $title] == 0} {

append html "$label"
} else {

append html "$label"
}
set sep " | "

}
return $html

}

Example 12 SiteMenu and SiteFooter template procedures. Two-column format with menu in the left column.

proc SitePage {title} {
global site
set html "<html><head><title>$title</title></head>\n\

<body bgcolor=$site(bg) text=$site(fg)>\n\
<!-- Two Column Layout -->\n\
<table cellpadding=0>\n\
<tr><td>\n\
<!-- Left Column -->\n\
\n\
\n\
[SiteMenu
 $site(pages)]\n\
</td><td>\n\
<!-- Right Column -->\n\
<h1>$title</h1>\n\
<p>\n"

return $html
}
proc SiteFooter {} {

global site
set html "<p><hr>\n\

[SiteMenu | $site(pages)]\n\
</td></tr></table>\n"

return $html
}
proc SiteMenu {sep list} {

global page
set s "" ; set html ""
foreach {label url} $list {

if {[string compare $page(url) $url] == 0} {
append html slabel

} else {
append html "slabel"

}
set s $sep

}
return $html

}

Example 13 The SiteLink procedure.

proc SiteLink {label} {
global site
array set map $site(pages)
if {[info exist map($label)]} {

return "$label"
} else {

return $label
}

}

Appendix B: Performance Charts

This chart shows two web servers, IIS 4 and TclHttpd, running on a 450 MHz Pentium-III under Windows
NT. There is a plot for each run so you can see the variation across runs. Each run fetched the same URL
repeatedly from the server using a single-threaded client. The runs performed either 100, 200, or 1000 rep-
etitions, although these are not distinguished in the graph. These runs include some dynamic pages as well
as static. The outlying points for TclHttpd are CGI scripts. There were no CGI tests done on IIS.

Windows Dell 450

0

10

20

30

40

50

60

70

80

0 20000 40000 60000 80000 100000 120000 140000

Bytes

M
se

c IIS 4.0

TclHttpd

NT.Dell-450.col

This chart shows the cost of creating dynamic pages on different platforms. The tests were repeated several
times, and points are plotted for each run. All tests were run on the Sparc-270. CGI is slowest, of course,
because Apache must fork a process. AOLserver is fastest, with the mod_tcl plugin for Apache close behind.
TclHttpd is about three times faster than Apache CGI, and AOLserver is about 10 times faster than Apache
CGI.

The dynamic page was very trivial, equivalent to:

puts “hello, world”

Dynam ic Pages

0

10

20

30

40

50

60

70

80

90

Server

M
se

c

Apache CGI

TclHttpd

AOLserver

Apache mod_tcl

This figure compares all web servers when fetching a 32 Kbyte image file. Note that both the hardware and
the web server are changing. For each hardware platform, TclHttpd and one or more other servers were com-
pared. Overall TclHttpd runs from 1.5 to 3 times slower for moderate sized transfers.

32 K file

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12

Server

M
se

c

Apache Dell-400

TclHttpd Dell 400

IIS 4 Dell-450

TclHttpd Dell 450

Apache Sparc-270

AOLserver Sparc-270

Netscape

TclHttpd Sparc-270

Apache Sparc-75x2

AOLserver Sparc-75x2

TclHttpd Sparc-75x2

